
May 1998 • The Hewlett-Packard JournalA-1Subarticle 7a • 1998 Hewlett Packard Company

Implementation of Advanced Display
Technologies on HP-UX Workstations

This article provides implementation and configuration information about the

single logical screen (SLS) technology described in the article “Advanced

Display Technologies on HP-UX Workstations.”1

Understanding the implementation of SLS requires a little background on

the X server architecture. The X server is divided into layers of functionality,

each with a specific purpose and each interfacing with its neighbors. At the

lowest level, which is closest to the physical hardware, is the device-dependent

X (DDX) layer. This layer is responsible for controlling the frame buffer,

including all rendering. Specifics of frame buffer control involve functions

such as frame buffer initialization and state management, hardware locking,

rendering, pointer control, hardware colormap management, and other

functions such as direct memory access. Also included within the DDX layer

is the detection and management of input.

At the highest layer is the device-independent X (DIX) layer. This layer

contains code that is independent of the various hardware platforms. Think of

this layer as the control layer. It includes the dispatch loop that manages the

reception and processing of X protocol, event management, error detection,

and other control, organization and bookkeeping operations. This layer also

interfaces extensively with the operating system interface layer and with the

DDX layers.

The operating system interface layer contains operating system calls, and it

controls such things as memory management (allocation and deallocation),

connections (socket creation), and kernel interactions. Although most of the

operating system interface layer code is referenced from within the DIX layer,

the DDX layer also invokes interface-layer-specific calls. Although there are

other areas, such as font control, they have very little to do with SLS so they

will be omitted from our discussion. Figure 1 shows typical X Client using an

X API such as Xlib to communicate with the X server.

��

 �� ���	��

���� �� �
����

��

 �� ���	��

A software engineer at

the HP Workstation Sys-

tems Division, Todd

Spencer was responsible for development of

the the SAM component that allows users to

set up multiscreen and single logical screen

configurations. He came to HP in 1989 after

receiving an MS degree in computer science

from the University of Utah. Todd was born

in Utah, is married and has four children. His

outside interests include tropical fish, camp-

ing, woodworking, piano (playing classical

music), and jogging.

���� �� �
����

Paul Anderson is a soft-

ware engineer at the HP

Workstation Systems Di-

vision. He joined HP in 1996 after receiving a

BS degree in computer science from the Uni-

versity of Minnesota. He is currently working

on device drivers for new peripheral technol-

ogies. His professional interests include I/O

drivers, operating systems, and networking.

Paul was born in Edina, Minnesota. His out-

side interests include hiking, music, and

mountain biking.

May 1998 • The Hewlett-Packard JournalA-2Subarticle 7a • 1998 Hewlett Packard Company

Figure 1

A typical X client uses an X API such as Xlib to communicate
with the X server.

device-independent
X (DIX) Layer

X API

X Client

device-dependent
X (DDX) Layer

Operating System
CommunicationsOperating System

Interface Layer

Xlib

The DDX, DIX, and operating system interface layers for-
mulate the essence of the X server. User programs typi-
cally do not send X protocol directly to the X server.
Rather, they use an API such as Xlib or one of the Motif
toolkits that generate X protocol and communicate
with the X server. For example, when a client issues an
XOpenDisplay() call, a connection is established with the X
server. A subsequent XDrawRectangle() request will then
cause the Xlib library to generate the appropriate X proto-
col which eventually gets sent across the connection to the
X server. The operating system interface layer procedure
WaitForSomething() detects the arrival of each request. The
DIX Dispatch() procedure decodes it and invokes the ap-
propriate procedure. These high-level procedures perform
error checking, ensure that the graphics context has been
validated and possibly perform other internal bookkeeping
before invoking the appropriate DDX entry point to draw
the appropriate pixels on the screen.

In the HP-UX operating system, the X server executable
does not contain static DDX modules. DDX modules are
dynamically loaded and initialized via plug-and-play func-
tionality within the DIX InitOutput() entry point. There is a
collector mechanism in place that identifies which DDX
modules can support a particular device and selects the
best module available. Typically, when support for new
hardware is added all that is required is a new DDX
module and broker, which is another shared library that
works with the collector to tell the X server what graphics
device it supports and how it is to be loaded. With SLS,

we provided a new DDX module (and broker) and made
some minor modifications to the DIX and input areas.

Initialization

During initialization of the HP-UX X server, screen config-
urations are set up by parsing the X0screen configuration
file. The syntax for a normal screen is simply “Screen
<device_name>” (for example, “Screen /dev/crt”). When-
ever this syntax is parsed, a new screen is created and
stored in the global screenInfo array.

Because SLS manages multiple devices, it cannot use the
same X0screen configuration file parsing mechanism. It
needs to know which devices to manage and how to orga-
nize them (for example, vertical, horizontal, or matrix
layout). To accomplish this, the X server configuration
syntax was extended. For SLS scenarios, the configura-
tion file must specify the number of rows, columns, and
device files that will be managed by the logical screen.
The syntax is as follows*:

 SingleLogicalScreen <nRows> <nCols> <device_name1> ...
<device_nameN>

Whenever the parsing routines detect the SingleLogical-
Screen token in the configuration file, a new procedure
is called to parse the remaining SLS tokens, initialize the
necessary global structures, and create the SLS screen.
An interesting implementation detail to note is that we
also create additional screen structures for each device
being managed by the single logical screen. These screens
are referred to as alternate screens and are hidden from
the DIX layer in that they are not accessible by the global
screenInfo array. There is another global data structure,
called SLSRec, that points to these alternate screens and
records information such as screen offsets. An instance of
an SLSRec is created for each SLS screen. The structure
and purpose of SLSRec is similar to the screenInfo global.

For each SLS screen and its components (alternate
screens) an instance of the ScreenRec structure is created.
ScreenRec is a high-level DIX structure that stores screen-
specific information and function pointers for screen
operations involving windows, pixmaps, backing store,
fonts, pointers, colormaps, regions, and related opera-
tions. As shown in Figure 2 there is one ScreenRec for

* This is transparent to users configuring the X server via the system administration
manager (SAM) utility.

May 1998 • The Hewlett-Packard JournalA-3Subarticle 7a • 1998 Hewlett Packard Company

Figure 2

The SLS data structures and their association to the SLS hardware.

Hardware Level

Data Structure
Level

Monitor 1 Monitor 2 Monitor 3

display:0.0
SPU with Three
Graphics Cards

0,0

0,0

0,0

1279,1023

Frame Buffers

0,0

Alternate
Screen 1

Alternate
Screen 2

Alternate
Screen 3

SLS Screen (display:0.0)

SLSRec

Pointers to
ScreenRec
Structures

Four ScreenRec Structures
3839,1023

Size of Each Frame Buffer

the SLS screen and one each for the alternate screens.
This structure was modified to allow SLS to intercept pro-
tocol for mapping and unmapping windows, circulating
windows, changing the window stacking order, and deliv-
ering events. Thus, when SLS intercepts one of these pro-
tocols, the SLS ScreenRec uses the function pointers in its
jump table to invoke the functions associated with each
alternate screen’s ScreenRec. These functions use the
information contained in their respective ScreenRecs to
invoke other functions to perform the requested opera-
tions on their alternate screens. This architecture allows
the DDX modules to drive the SLS screen in a device-
independent fashion.

The reason for creating alternate screens is to leverage as
much from the existing DDX drivers as possible. It would
be unproductive to require a rewrite of all the existing
code to support SLS. The SLS module is a controller that
inserts itself into the DIX and DDX layers and performs
the necessary control and manipulation to drive multiple
DDX modules. In this way, we get the benefit of control-
ling multiple devices under a logical screen without having
the development and maintenance overhead of creating
and supporting SLS-specific drivers for all our graphics
devices.

When each alternate screen is created, the origins are
manipulated to account for the layout of the SLS screens.

May 1998 • The Hewlett-Packard JournalA-4Subarticle 7a • 1998 Hewlett Packard Company

Figure 3

Coordinate offsets in the alternate screens.

1-by-3 Single Logical Screen

Alternate
Screen 1

Alternate
Screen 2

Alternate
Screen 3

(0,0) (1280,0) (2560,0)

Monitor 1 Monitor 2 Monitor 3

For example, in a 1-by-3 SLS configuration (see Figure 3),
the first, or left-most screen, would have an offset of (0,0).
The center screen would be offset by the width of the
first screen (for example, �1280,0). In this case we ig-
nore the height in horizontal configurations because each
alternate screen begins at zero and extends to the height
of the device. Finally, the last screen would have an x
offset consisting of the width of the previous two screens
(for example, �2560,0). The negative values are used be-
cause we need to compensate for the fact that the frame
buffer begins at 0,0 but represents another location on the
SLS screen (described next). This negative value adjusts
for the SLS screen offset and allows the normal DDX
driver to render to a location that is valid and visible for
that device.

Request Duplication

In general, client requests for the SLS screen are dupli-
cated across each of the alternate screens. For instance,
when a window is created on an SLS screen, a window is
also created on each of the alternate screens. These alter-
nate windows have the same characteristics as the top-
level SLS window. The same is true for other screen prop-
erties such as colormaps and graphics contexts. Although
this creates some overhead, it enables SLS to operate
transparently to the user and to the DDX modules. For
example, creating a window with a specific geometry in a
1-by-3 SLS configuration, results in the creation of four
windows, all with essentially the same geometry. One
window is created for the SLS screen referenced by client
applications via an identifier obtained with Xlib API calls
to XCreateWindow() or XCreateSimpleWindow(). The other
three windows are created on each alternate screen. Only

the SLS module in the X server knows about these alter-
nate screen windows. When we create windows for alter-
nate screens, we adjust the coordinates according to the
offsets of each screen.

For example, in Figure 4 the window defined by the
coordinates x�0, y�0, width�100, height�100 is
shifted to x�0, y�0 on alternate screen 1, to x = �1280,
y�0 on alternate screen 2, and to x��2560, y�0 on al-
ternate screen 3. In this way, when a window overlaps
monitors, only the correct portions are seen on each mon-
itor. Out of the four windows created in this example,
only the window on alternate screen 1 will be visible be-
cause it is completely contained within the frame buffer
associated with alternate screen 1 because it is contained
within region 0,0 and 1279,1023.

When rendering, an X Client must specify a target draw-
able, which is represented by a pixmap or a window. For
rendering to a window, the SLS module must substitute
the user-specified top-level window with the appropriate
alternate windows before invoking the rendering proce-
dures. A rendering procedure is called for each alternate
window. Since this top-level SLS window has no frame
buffer associated with it, all rendering must occur within
the alternate windows.

Event Processing

The implementation of the SLS module required some
special considerations for event processing. If we had not
made any changes to the SLS module, user applications
would receive events in a different way than they receive
them from a non-SLS environment, violating the design
goal of application transparency and violating standard X
protocol.

An event is a message generated by the X Server when a
particular action occurs. Events are sent only to interested
clients. A client application reads each event (in FIFO
order) and performs the appropriate processing for that
event. Events are commonly generated to notify the client
of input events or state changes in the X server’s window
tree. In addition, pointer activities such as pressing mouse
buttons and moving the mouse will cause the X server to
generate events such as ButtonPress, ButtonRelease, and
MotionNotify. Keyboard activity generates analogous

May 1998 • The Hewlett-Packard JournalA-5Subarticle 7a • 1998 Hewlett Packard Company

Figure 4

Alternate Screen 1 View

3839,1023

2560,0

2559,10231279,1023

1280,00,0

2559,1023

1280,0

1279,10231,1023

0,01280,0

1279,1023

0,0

1,10231279,1023

1280,02560,0

Alternate Screen 2 View

Alternate Screen 3 View

Visible

Visible

Visible

1279,1023

0,0

User View (Via Frame Buffers)

Mapping a window onto an SLS screen.

Monitor 2 Monitor 3Monitor 1

Mapping to Frame Buffers

events such as KeyPress and KeyRelease. Examples of X
server state change events include EnterNotify and Leave-
Notify when the pointer enters or leaves a window or
DestroyNotify when a window is destroyed. These are just
a few examples of the various event types the X server
can generate and clients can receive and process.

In describing the delivery of events to clients, we often
use the term “interested client.” We define a client as in-
terested in an event if it has explicitly asked the X server
to deliver that type of event. In this manner, the X server
does not notify all clients about all events, which often
reduces the complexity of client applications. This event

selection model also decreases network traffic by reduc-
ing the number of superfluous events traveling from the
X server to its clients.

To illustrate the challenge posed by event processing in
SLS, consider an example using a VisibilityNotify event. A
VisibilityNotify event reports to an interested client that a
window’s visibility has changed. An interested client can
then decide to begin or terminate rendering to that win-
dow if the event denotes that the window is partially ob-
scured or fully obscured. Consider the SLS configuration
shown in Figure 5 that is composed of three screens with
a window spanning screens 1 and 2.

May 1998 • The Hewlett-Packard JournalA-6Subarticle 7a • 1998 Hewlett Packard Company

Figure 5

A configuration in which a single state change could cause
four VisibilityNotify events.

Single Logical Screen

Alternate
Screen 1

Alternate
Screen 2

Alternate
Screen 3

In this case, a single state change could cause four Visibility-
Notify events (remember that four windows are created
for this configuration: one for the SLS screen and one for
each alternate screen). First, alternate screen 1 tells the
client that the window is partially obscured. Second,
alternate screen 2 gives the client the same message
because each half of the window is only partially visible
on each of the two physical screens it spans. As a result,
an interested client will render to the window. The third
event comes from alternate screen 3, which tells the
client that the window is fully obscured so that the client
will stop rendering to the window. Thus, the client gets
several conflicting messages as to the visibility of the win-
dow. All three of these messages, however, do not give an
accurate depiction of the window because another Visibili-
tyNotify event will be generated, denoting that the window
is fully visible on the SLS screen. Thus, our model of using
alternate screens poses many problems in event handling.

Given the event processing complexity of the simple situ-
ation described above, what is the best mechanism to sort
out a potentially conflicting series of events and give the
client an accurate story of what is depicted on the screen?
Since the SLS screen reflects the true composite state of
all alternate screens, the X server can discard all events
that do not originate from the SLS screen. Simply eliminat-
ing events that originate from all alternate screens solves
much of the complexity of event processing. Because al-
ternate screen events are never placed on the X server’s
outbound event queue, the potential for a client to receive
conflicting event notifications is eliminated. Based on
these assumptions, the primary event processing routine
in the SLS module can be expressed in the following
pseudocode:

for each potential ”event” on server’s event

queue

 {

 if event’s originating screen is the SLS

screen

 {

 Deliver event to interested clients

 }

 else

 {

 Discard event

 }

 }

The method of discarding events from alternate screens
works well, except in the case of Expose events. The X
server generates an Expose event when an obscured win-
dow becomes visible or when an obscured portion of a
window becomes visible. Expose events, however, can be
more complex than other events because a single window
action, such as moving, raising, or destroying a window,
can cause the X server to generate multiple Expose events.
Consider Figure 6, which contains a single screen with
three windows.

 If the user destroyed window C, the X server would gen-
erate Expose events to tell interested clients that windows
A and B have new regions exposed and that those exposed
regions need to be redrawn. The X server must also en-
sure that these Expose events are delivered to interested
clients in a continuous fashion. That is, the Expose events
resulting from a single window action must be delivered
in a continuous event stream. The XExposeEvent structure
has a count field that tells the client how many subsequent
contiguous Expose events remain.

The requirement that related Expose events must be deliv-
ered in a single series posed the greatest problem for the

Figure 6

A single screen with windows A, B, and C.

A B

C

May 1998 • The Hewlett-Packard JournalA-7Subarticle 7a • 1998 Hewlett Packard Company

Figure 7

Window B obscures a portion of window A.

Single Logical Screen

Alternate
Screen 1

Alternate
Screen 2

A

B

event handling component in the SLS module. To illus-
trate the problem, consider the two screens in Figure 7

that are configured as a single logical screen.

In this example, window B partially obscures window A.
If window B is destroyed, the client needs to be notified
so that it can issue requests to redraw the lower half of
window A. There are two regions that need to be redrawn:
the region of window A on alternate screen 1 and the re-
gion of window A on alternate screen 2. If we used the
method of discarding events that originate from alternate
screens, the client would not receive the exposures from
each of the alternate screens.

This might lead one to conclude that the SLS module’s
event processing loop should ignore all events from alter-
nate screens, except for Expose events, which should be
passed straight through the client as if they were non-
Expose events. However, this method would break the
requirement that related Expose events be delivered
contiguously.

If window C existed on alternate screens 1 and 2 and was
also obscured by window B (Figure 8), the destruction of
window B could cause Expose events to be generated in
the sequence given in Table I.

Figure 8

Window B obscures portions of windows A and C.

Single Logical Screen

Alternate
Screen 1

Alternate
Screen 2

A

B
C

This would result in four different Expose events referring
to two different windows in an interleaving fashion.
Instead, we would prefer to see something like the
sequence in Table II.

As a result, the client receives two event bundles refer-
encing windows A and C, and each bundle contains two
Expose events denoting the regions on the particular win-
dow that need to be redrawn. This satisfies the continuity
requirement for delivering Expose events.

Based on the need for a reordering method similar to that
shown in Table II, the X server needs to use a different
mechanism to process and deliver Expose events. If a typi-
cal user’s environment only had two or three windows,
the X server might have been able to function using hard-
coded bookkeeping to track and reorder Expose events.
Since most users commonly have substantially greater
than a few windows (the Common Desk Environment
[CDE] may use hundreds), a more general and robust
method was needed. As a result, the SLS module uses a
technique called event coalescing to reorder Expose events
correctly into bundles corresponding to each window
before the Expose events are delivered to the client.

Table I
Expose events generated from destroying window B in Figure 8.

 Sequence
Number

 Alternate
Screen

Window Region (x1,y1,x2,y2)

0 1 A (1000,600,1279,700)

1 1 C (600,1000,1279,1100)

2 2 A (1280,600,1580,700)

3 2 C (1280,1000,1800,1100)

May 1998 • The Hewlett-Packard JournalA-8Subarticle 7a • 1998 Hewlett Packard Company

Table II
Desired Expose event sequence generated from destroying window B in Figure 8.

 Sequence
Number

 Alternate
Screen

Window Region (x1,y1,x2,y2)

 0 1 A (1000,600,1279,700)

 1 2 A (1280,600,1580,700)

 2 1 C (600,1000,1279,1100)

 3 2 C (1280,1100,1800,1100)

Event coalescing is a generic method for temporarily re-
moving events from the X server’s event queue, reordering
the events into related bundles, and then placing them
back onto the event queue for later delivery to the client.
To perform this reordering, the SLS module uses an inter-
nal linked list that corresponds to each window. When a
newly Exposed region for a particular window is discov-
ered, that region is simply added to the link correspond-
ing to that window. From the configuration shown in
Figure 8 (and the event list in Table I), generating inter-
leaved Expose events for windows A and C on alternate
screens 1 and 2 would yield an event coalescing list like
the one shown in Figure 9.

Therefore, at the appropriate time, we can easily arrange
the Expose events for window A and send a two-event
bundle corresponding to window A to the client. The
same applies to window C.

Figure 9

(600,1000,
1279,1100)

Sequence: 1

(1280,600,
1580,700)

Sequence: 2

(1280,1100,
1800,1100)

Sequence: 3

A

(1000,600,
1279,700)

Sequence: 0

C

A coalescing list for the exposed windows in Figure 8.

Now that we have rearranged the Expose events into easily
deliverable bundles, the X server needs to determine the
appropriate time to deliver these bundles to the client. As
with other events, we deliver the repackaged Expose event
when the SLS screen, rather than an alternate screen, re-
ceives the Expose event. When the SLS screen receives an
Expose event for a particular window, we find the events
packaged for that window by looking for that window in
our list, delivering the event bundle to the client, and then
deleting these events from our event coalescing linked list.

Using this information, we can extend our original event-
processing component of the SLS module into the follow-
ing pseudocode:

for each potential ”event” on server’s event

queue

 {

 if event is an Expose event

 {

 if event originated from an alternate

 screen

 {

 add event to the list for its

 corresponding window

 }

 else if event originated from SLS

 screen

 {

 Deliver ”saved” events for that

 window to interested clients.

 Delete those events from internal

 list

 }

 continue;

 }

 if event’s originating screen is the SLS

 screen

 {

 Deliver event to interested clients

May 1998 • The Hewlett-Packard JournalA-9Subarticle 7a • 1998 Hewlett Packard Company

 }

 else

 {

 Discard event

 }

 }

By using this event-processing mechanism, the SLS module
can cleanly deliver events to clients in an expected fashion
and without conflicting results.

Input Considerations

Although much of the complexity of the SLS module in-
volves managing display output (that is, keeping track of
which windows or portions thereof appear on which
physical screens), there are also some special consider-
ations that must be made for input. The most important
aspect of input event handling is that the user sees a
smooth motion when moving the pointer. The pointer
needs to move from one screen to another when it crosses
monitor boundaries, and this transition should be handled
smoothly. For example, consider the configuration in
Figure 10.

If the pointer is located in the upper left corner of monitor
2, and we move the pointer to the left, the pointer is moved
from monitor 2 to monitor 1. The SLS module needs to
ensure that the pointer moves smoothly across the moni-
tor boundaries rather than jumping across monitors. This
is especially important when the user drags a window
from one monitor to another, since a jumping or pointer-
snap effect will cause the entire window to jump.

In addition, if the pointer comes to rest at a location that
corresponds to a physical monitor boundary, we want the
pointer to be present on both screens, rather than choos-
ing one screen or the other to display the pointer. To do
this, we employ the concept of pointer sensitivity along

Figure 10

Monitor 1 Monitor 2

x

Moving the pointer between monitors.

the edges of the physical monitors. When the pointer is
within this sensitive range along the edge of a monitor, the
X server displays the pointer on the neighboring screen
and the current screen. In Figure 10, as the pointer
moves from monitor 2 to monitor 1, there will be a time
when the head of the pointer is displayed on monitor 1,
and the tail of the pointer appears on monitor 2. This
maintains the look and feel of the single logical screen
concept.

To implement this, we check the new location coordinates
for our pointer on each screen and turn the pointer on or
off for that screen, depending on whether the pointer
should be visible on that screen. Since we use the DDX
driver’s pointer rendering routines, we let the individual
DDX driver perform the work of clipping against physical
screen boundaries. Therefore, the SLS module does not
need to clip the pointer for the case in which the pointer
falls on adjacent screens. Not only does this implementa-
tion method simplify pointer management code within the
SLS module, but it also easily generalizes to the case of a
four-headed 2-by-2 SLS configuration, in which some
portion of the pointer could physically appear on all four
screens. Based on this description, the following pseudo-
code handles most of the code in the SLS module that
tracks pointer position:

 /* x & y are the x- and y-coordinates of

 * location to move the pointer.

 * sensitivity_x & sensitivity_y are the

 * x and y coordinates of our pointer

 * sensitivity bounding box.

 */
 for each ”alternate screen”

 {

 if (x,y) is on ”alternate screen” or is

 in the region formed by (sensitivity_x,

 sensitivity_y)

 {

 Displaypointer (screen, x, y);

 }

 else

 {

 TurnOffpointer (screen);

 }

 }

The question comes up as to how the X server handles
pointer movement for the case of a multiscreen configura-
tion like that shown in Figure 11, which has four physical
monitors configured as two SLS screens. In this scenario

May 1998 • The Hewlett-Packard JournalA-10Subarticle 7a • 1998 Hewlett Packard Company

Figure 11

display:0.0 display:0.1

Two 1-by-2 SLS configurations combined via multiscreen.

the SLS module handles the pointer movement, as pre-
viously described, for each of the two SLS screens. There-
fore, pointer motion within each SLS screen will have a
smooth and even movement across the physical screens.
When moving from one SLS to the other SLS, however,
the pointer motion will not be as smooth because we do
not try to accomplish this smooth pointer motion in a
multiscreen environment.

If the pointer in Figure 11 moves from the left SLS screen
to the right SLS screen, the pointer on the left SLS screen
will be turned off, and it will be turned on in the right SLS
screen. The user would not, however, see a case where
the pointer’s head appears on the left screen of the right
SLS screen and the pointer’s tail on the right screen of the
left SLS screen. Since the X server simply turns off the
pointer on the left SLS screen and turns it on in the right
SLS screen, the pointer transition will not appear smooth.
This occurs because pointer motion between (logical)
screens in a multiscreen configuration is not handled in
the SLS module but rather in the DDX input code.

Configuration

The HP-UX system administration manager (SAM) sup-
ports advanced display configuration on HP-UX 10.0 sys-
tems and beyond. This HP-UX GUI automates many dif-
ferent administration tasks and can run under X Windows
or in terminal mode. Users are required to have root per-
mission to execute the SAM command.

A prerequisite for an advanced display configuration
is the availability of multiple graphics display devices.
Although some utilities exist that will identify graphics
devices, the best way to identify the number and type of
graphics devices in a system is through SAM. To do this,
invoke SAM and look for either the Display or X Server
Configuration icons. On patched 10.20 systems and beyond,

the X Server Configuration icon has been moved to under
the Display folder shown in Figure 12.

Clicking on the Display folder icon will produce the win-
dow shown in Figure 13. The Monitor Configuration icon
allows changing the screen’s (frame buffer) resolution,
refresh rate, timing standard, hardware double buffering,
and quad buffer stereo operation without requiring the
user to reboot. The X Server Configuration icon is used to
configure the HP-UX X server or simply identify which
graphics devices have been installed and are available.
It is this subarea within SAM that enables the advanced
display configurations.

Note that on systems containing only one graphics device,
it will be impossible to set up an advanced display config-
uration. It is possible, however, to install additional graph-
ics devices and have an advanced display configuration.
The graphics configuration tool GUI will provide insight
into what graphics are supported on HP-UX systems and
where they can be plugged in.

As shown in Figure 14, the X Server Configuration window
graphically illustrates the current X server configuration.
In this case system xtc112 contains two HP VISUALIZE-EG
graphics devices. The first is an internal graphics device
(slot 0) and is configured, meaning that the X server is
currently using it. The second graphics device is plugged
into slot 1 and is unconfigured, as represented by the
grayed icon.

Just below the menu bar are two status lines. The first
status line is used to convey critical screen information.
The first two words identify if a user is configuring a print
server or a video server. For most users this will always
be a video server. The DISPLAY string is the environment
variable users must set for X clients to talk to this X server.
The X Configuration File string identifies which configuration

May 1998 • The Hewlett-Packard JournalA-11Subarticle 7a • 1998 Hewlett Packard Company

Figure 12

Main SAM window.

Figure 13

The Display window.

May 1998 • The Hewlett-Packard JournalA-12Subarticle 7a • 1998 Hewlett Packard Company

Figure 14

The X Server Configuration window.

file is being used. For example, if the default X0screens
file is being used, the hostname is xtc112, and if the ksh
shell is being used, then a user would need to type: export
DISPLAY=xtc112:0 to run an X client on that display.

The major portion of the X Server Configuration window
is used for screen icons. There are three types of screen
icons: configured, unconfigured, and SLS (see Figure 15).
Each icon represents one screen that maps directly to a
physical graphics device (or devices) such as a graphics
card or the internal onboard graphics devices (or a combi-
nation of devices for SLS). Each screen can be configured
or unconfigured. The configured screens will always be
sorted by screen position in a left-to-right fashion. For
example, if there are two configured screens, the left-most
icon is assigned position: 0.0, and the second screen is
given position :0.1. Unconfigured screens are represented
with grayed icons that indicate that the X server will not
use them. The icon for a single logical screen shows the
X spanning multiple monitors and is used to represent
screens made up of multiple graphics devices.

Figure 15

The X Server Configuration icons. (a) Configured screen.
(b) Unconfigured screen. (c) SLS screen.

(a) (b) (c)

Actions

The menu items in the Actions menu contain the function-
ality for changing the configuration of the X server.

Actions will be active or grayed out depending on which
screens have been chosen. Users can select multiple
screens via CTRL-select. Preselecting configured and un-
configured screens will result in only the global actions
Describe Screen and Identify Screen being active. SLS icons
are in the same classification as configured icons. Uncon-
figuring an SLS screen is similar to breaking the compo-
nents into individual screens (which will remain individu-
ally configured). Removing a screen from configuration
on an SLS icon will dissolve the SLS object into its com-
ponents and return it to an unconfigured state.

Multiscreen Configuration

There are several ways to create a multiscreen configura-
tion. The simplest is to select an unconfigured screen and
add it to the configuration. The Add action causes the
selected screen to be appended to the existing list of
configured screens.

To control screen positioning, users can invoke the Modify
Multi-Screen Layout... action. When invoking this action, if
any unconfigured screens have been preselected, these
screens will become configured before displaying the lay-
out dialog window. If fewer than two configured screens
exist, an error message is displayed instructing the user in
properly invoking the layout.

May 1998 • The Hewlett-Packard JournalA-13Subarticle 7a • 1998 Hewlett Packard Company

Any modifications to the X server configuration will take
effect after the configuration has been saved and the X
server has been restarted.

Identify Screen

There is no automated method of identifying whether the
monitors are positioned left-to-right, top-to-bottom, or
whether there is a monitor connected at all. This was the
first real problem encountered in providing a GUI for ad-
vanced display configurations. For single-screen systems
this is not much of a problem. Of course, if the monitor is
not connected properly, nothing will be visible. On systems
with multiple screens, users might not know which moni-
tor they are looking at. How can a user identify which
monitor is connected to which graphics device? When
configuring an advanced display, it is important that users
know where a screen is positioned, otherwise their layout
will be incorrect.

On HP-UX systems a unique device file represents each
graphics device. No physical relationship exists between
the mapping of physical monitor placement to device
files, nor is there any direct correlation between the posi-
tion of the graphics device (for example, which slot it is
located in) with the major and minor numbers of the
device file. Thus, even if the user were to trace monitor
cables from the graphics cards to the actual monitors, a
cumbersome task, nothing would be learned about which
device file maps to which monitor. Since there is no auto-
mated manner to identify this information, we provided
the user with the ability to identify this information via
a point and click interface that identifies a particular
screen’s monitor.

In the X Server Configuration window (see Figure 14), the
Identify Screen action calls a procedure to repeatedly turn
off and on the video output of the graphics cards for the
selected screens. This action causes the monitor con-
nected to the graphics device to blink. In this way users
can easily identify which monitor maps to which physical
graphics device.

The procedures that cause the screen to blink are located
in the shared library of each DDX driver and are indepen-
dent of our SAM component. In this way we have enabled
SAM to support new drivers (or patched drivers) without
changing the SAM executable. This is part of the plug-and-
play functionality that enables the X server to support new
hardware without changing existing libraries.

Single Logical Screen Configuration

The single logical screen setup is very similar to the multi-
screen configuration. Users select those screens they
want to combine into a single logical screen and then
select the Create SLS... action from within the Single Logical
Screen submenu.

An error message will appear if the user attempts to
combine two or more incompatible screens. Warning
messages are issued if the various screen options of the
component screens are different in any way.

The Create SLS... action invokes the layout dialog. When a
user accepts a single logical screen layout, the individual
component screen icons are replaced with the SLS icon.
The SLS screen will then assume the position of its lowest
component. Figure 16 shows what this icon would like
if we combined the two HP VISUALIZE-EG screens in
Figure 14 into a single logical screen using a horizontal
layout.

The SLS icon naming convention conveys information
about its internal layout. The 1×2 in the icon signifies that
the screens are horizontal, and the parenthetical expres-
sion (0,1) indicates the ordering with the internal card
(slot 0) on the left and the external card (in slot 1) on the
right. As with the multiscreen setup, any modifications
will take effect after the configuration has been saved and
the X server has been restarted.

SLSclone Configuration

The SLSclone configuration begins with an SLS configura-
tion. After the SLS configuration is operational, a user
then runs a program to change between SLS and SLSclone
dynamically. This program is shipping with the latest X
server patch (PHSS_12462) and is called SLSclone.

Figure 16

The icon that results from combining two HP VISUALIZE-EG
screens.

May 1998 • The Hewlett-Packard JournalA-14Subarticle 7a • 1998 Hewlett Packard Company

Conclusion

This article has described the implementation of our ad-
vanced display technologies for HP-UX workstations.
Initialization of a single logical screen (SLS) or SLSclone
configuration includes the creation of screen structures
for each of the component screens. These screens are
called alternate screens. The SLS driver replicates appro-
priate requests directed at the SLS screen to these alter-
nate screens, adjusting the offsets as appropriate to
achieve the desired layout. Rendering to alternate screens
is accomplished through existing DDX libraries, providing
flexibility in allowing us to support DDX under SLS drivers
without modifying our SLS driver.

We have also shown how event management was modi-
fied and discussed input considerations arising from our
handling of events. Finally, we have briefly shown how
the HP-UX SAM utility can be used to easily configure
multiple graphics devices. For additional information on
advanced display configurations and other X server fea-
tures, visit our web site at:

 http://www.hp.com/go/xwindow

References

1. T. Spencer, P. Anderson, and D. Sweetser, ”Advanced Display
Technologies on HP-UX Workstations,” Hewlett-Packard Journal,
Vol. 49, no. 2, May 1998.

� Go to Subarticle 7b
� Return to Article 7
� Go to Next Article
� Go to Journal Home Page

http://www.hp.com/go/xwindow
http://www.hp.com/hpj/98may/ma98a7b.pdf
http://www.hp.com/hpj/98may/ma98a7.htm
http://www.hp.com/hpj/98may/ma98a8.htm
http://www.hp.com/hpj/journal.html

