
41 May 1998 •  The Hewlett-Packard JournalArticle 6  •   1998 Hewlett Packard Company

Concurrent Engineering in OpenGL  Product
Development

Time to market was reduced when tasks that had been traditionally serialized

were completed in parallel.

Concurrent engineering is the convergence, in time and purpose, of

interdependent engineering tasks. The benefits of concurrent engineering

versus traditional serial dependency are shown in Figure 1. Careful planning

and management of the concurrent engineering process result in:

� Faster time to market

� Lower engineering expenses

� Improved schedule predictability.

This article discusses the use of concurrent engineering for OpenGL product

development at the HP Workstation Systems Division.

OpenGL Concurrent Engineering

We applied concurrent engineering concepts in the development of our

OpenGL product in a number of ways, including:

� Closely coupled system design with partner laboratories

� Software architecture and design verification

� Real-use hardware verification

� Hardware simulation

� Milestones and communication

� Joint hardware and software design reviews

� Test programs written in parallel.

��
�� �� ���
�

�� �
���	 ���	���


��
�� �� ���
�

A senior engineer in the

graphics products labora-

tory at the HP Workstation

Systems Division, Robert Casey was the chief

software architect for the OpenGL product.

Currently, he leads the efforts on Direct 3D

technology in the graphics products laboratory.

He came to HP in 1987 after receiving a BS de-

gree in computer engineering from Ohio State

University. He was born in Columbus, Ohio,

is married and has two children. His outside

interests include skiing, soccer, and wood-

working.

�� �
���	 ���	���


Leonard Lindstone is a

project manager at the HP

Workstation Systems Divi-

sion. He is responsible for software drivers for

new graphics hardware. He joined HP in 1976

at the Calculator Products Division after earn-

ing a BSEE degree from the University of Colo-

rado. He also has an MS degree in computer

science from Colorado State University. Leon-

ard is married and has three children. He en-

joys music of all kinds and historical fiction.



42 May 1998 •  The Hewlett-Packard JournalArticle 6  •   1998 Hewlett Packard Company

Cultural Enablers

In addition to these technical tactics, the OpenGL team
enjoyed the benefits of several cultural enablers that have
been nurtured over many years to encourage concurrent
engineering. These include early concurrent staffing, an
environment that invites, expects, and supports bottoms-up
ideas to improve time to market, and the use of a focused
program team to use expertise and gain acceptance from
all functional areas and partners.

System Design with Partner Labs

We worked closely with the compiler and operating sys-
tem laboratories to design new features to greatly im-
prove our performance (see the “System Design Results”
section in the article on page 9). Our early system design
revealed that OpenGL inherently requires approximately
ten times more procedure calls and graphics device ac-
cesses than our previous graphics libraries. This large
increase in system use meant we had to minimize these
costs we previously had been able to amortize over a
complete primitive.

We worked closely with our partner laboratories to ensure
success. Our management secured partner acceptance,
funding, and staffing, and the engineers worked on the
joint system design. Changes of this magnitude in the
kernel and the compiler take time, and we could not af-
ford to wait until we had graphics hardware and software
running for problems to occur. Rather, we used careful
system performance models and competitive performance
projections to create processor state count budgets for
procedure calls and device access. These performance
goals guided our design. In fact, our first design to improve
procedure call overhead missed by a few states per call,
so we had to get more creative with our design to arrive
at an industry-leading solution. We managed these de-
pendencies throughout the project with frequent commu-
nication and interim milestones.

Software Architecture and Design Verification

We designed and followed a risk-driven life cycle. To sup-
port the concurrent engineering model, we needed a life
cycle that avoided the big bang approach of integrating all

Figure 1

Concurrent Engineering

System
Qualification

Driver and API
Design

Board
Design

Chip
Design

System
Design

Simulated System
Qualification

Operating System
Design

Compiler
Design

System
Design

Chip
Design

Board
Design

System
Qualification

Driver and API
Design

Reduce Time from First Silicon to Manufacturing Release

Traditional Serial Dependencies

The benefits of concurrent engineering.



43 May 1998 •  The Hewlett-Packard JournalArticle 6  •   1998 Hewlett Packard Company

Figure 2

OpenGL concurrent engineering techniques.

Simple
Demonstration

Spool
Files

Vertical Slice
(Graphics
Software)

Fast
Procedure

Calls

Fast
Device
Access

Simple
Demonstration Application

Old Device
Driver

VISUALIZE fx
Driver

Old
Hardware

VISUALIZE fx
Hardware
Simulator

VISUALIZE fx
Hardware

OpenGL OpenGL

OpenGL Turn
On (Graphics
Software and

Hardware)

System Turn On
(Graphics Soft-
ware and Hard-
ware, Compiler,

Kernel)

O
pe

nG
L

VISUALIZE fx
Driver

the pieces at the end. This would result in a longer and
less predictable time to market. Instead, we created a
prototyping environment. This environment was initially
created to test the software architecture and early design
decisions. The life cycle included a number of check-
points focused on interface specification, design, and
prototyping.

One key prototyping checkpoint in this environment is
what we called our “vertical slice,” which represented a
thin, tall slice through the early OpenGL architecture (see
Figure 2). Thin because it supports a small subset of the
full OpenGL functionality, and tall because it exercises all
portions of the software architecture, from the API to the
device driver-level interface. With this milestone, we had
a simple OpenGL demonstration running on our software
prototype.

The objectives of this vertical slice were to verify the
OpenGL software architecture and design, create a proto-
typing design environment, and rally the team around this
key deliverable.

Hardware Verification

Before we had completed verification of the software ar-
chitecture, it became evident that this same environment
needed to be quickly adapted and evolved to handle the
demands of hardware verification. OpenGL features and
performance represented the biggest challenge for the
new VISUALIZE fx hardware. Although this hardware
would also support our legacy APIs (Starbase, PHIGS,
PEX), most of the newness and therefore risk was con-
tained in our support of OpenGL. By evolving our proto-
typing environment for use as the hardware verification
vehicle, we were able to exercise the hardware model in
real-use scenarios (albeit considerably slower than full
performance).

Evolving this environment for hardware verification re-
quired us to take the prototyping further than we would
have for software verification alone. We had to add more
functionality to more fully test the OpenGL features in
hardware. We also had to do so quickly to avoid delaying
the hardware tape release.

This led to our second key prototyping checkpoint, which
we called “OpenGL turn on.” This milestone included the
same OpenGL demonstration running on the VISUALIZE
fx hardware simulator. We also added functionality
breadth to the vertical slice (see Figure 2). Doing all this
for a new OpenGL API represented a new level of concur-
rent engineering, in that we were running OpenGL pro-
grams on a prototype OpenGL library and driver and dis-
playing pictures on simulated VISUALIZE fx hardware, all
more than a year before shipments.

The key objective of this milestone was to verify system
design across the API, driver, operating system, and hard-
ware. The system generated pictures and, more impor-
tantly, spool files (command and data streams that cross
the hardware and software interface). These spool files
are then run against the hardware models to verify hard-
ware design under real OpenGL use scenarios.

This prototyping environment has the following
advantages:

� Reduces risk for system design and component design

� Resolve integration issues early



44 May 1998 •  The Hewlett-Packard JournalArticle 6  •   1998 Hewlett Packard Company

� Identify holes and design or architecture flaws

� Enable prototyping to evaluate design alternatives

� Enables key deliverables (hardware verification spool
files)

� Creates exciting focal points for developers

� Fosters teamwork

� Enables joint development

� Provides a means to monitor progress

� Provides a jump start to our code development phase.

This environment also has potential downsides. We felt
there was a risk that developers would feel that the need
or desire to prototype (for system turn on and hardware
verification) could overshadow the importance of product
design. We did not want to leave engineers with the model:
write some code, give it a try, and ship it if it works.

Thus, to keep the benefits of this environment and miti-
gate these potential downsides, we made a conscious de-
cision to switch gears from system turn on and prototype
mode to product code development mode. This point
came after we had delivered the spool files required for
hardware verification and before we had reached our
design complete checkpoint. From that point on, we
prototyped only for design purposes, not for enabling
more system functionality. We also created explicit check-
points for replacing previously prototyped code with
designed product code. This was an important shift to
avoid shipping prototype code. All product code had to
be designed and reviewed.

Hardware Simulation

One key factor in our concurrent engineering process is
hardware simulation. A detailed discussion of the hard-
ware simulation techniques used in our project are be-
yond the scope of this article. Briefly, we use three levels
of hardware simulation:

� A behavioral model (written in C)

� A register transfer level model (RTL)

� A gate model, which models the gate design and imple-
mentation.

The advantages of the behavioral model are that it can be
done well before the RTL and gate model so we can use it
with other components and prototypes. The behavioral

model is also significantly faster than the other models
(though still about 100 times slower than the real product),
allowing us to run many simple real programs on it. The
RTL model runs in Verilog and runs about one million
times slower than the real product. This limits the number
and size of test cases that can be run. The gate model is
even slower. Even so, we kept over 30 workstations busy
around the clock for months running these models. Often
a simulation run will use C models for all but one of the
new chips, with the one chip being simulated at the gate
level.

Milestones and Communication

We set up a number of R&D milestones to guide and track
our progress. The vertical slice and OpenGL turn on were
two such key milestones. OpenGL developer meetings
were held monthly to make sure that everyone had a clear
understanding of where we were headed and how each of
the developers’ contributions helped us get there.

Software and Hardware Design Reviews

The hardware and software engineers also held joint de-
sign reviews. The value of design reviews is to minimize
defects by enabling all the engineers to have the same
model of the system and to catch design flaws early and
correct them while defect finding and fixing is still inex-
pensive in terms of schedule and dollars.

On the software side, the review process focused heavily
on up-front design reviews (where changes are cheaper)
to get the design right. We maintained the importance of
doing inspections but reduced the inspection coverage
from 100 percent to a smaller representative subset of
code, as determined by the review team. We also in-
creased the number of reviewers at the design reviews and
reduced the participation as we moved to code reviews.
We maintained a consistent core set of reviewers who
followed the component from design to code review.

Tests Written in Parallel

To bring more parallelism to the development process,
we had an outside organization develop our OpenGL test
programs. By doing so, we were able to begin nightly
regression testing simultaneous with the code completion
checkpoint because the test programs were immediately
available. Historically, the developers have written the
tests following design and coding. This translates into



45 May 1998 •  The Hewlett-Packard JournalArticle 6  •   1998 Hewlett Packard Company

a lull between the code completion checkpoint and the
beginning of the testing phase.

Parallel development of the tests with the design and
implementation of the system was a key success factor
in our ability to ship a high-quality, software-only beta
version of our OpenGL product. No severe defects were
found in this beta product—our first OpenGL customer
deliverable.

One thing we learned from using an outside organization
to help with test writing was that writing test plans is
more a part of design than of testing. The developers,
with intimate knowledge of the API and the design, were
able to write much more comprehensive test plans than
the outside organization.

Conclusion

We achieved several positive results through the use of
concurrent engineering on our OpenGL product. Ulti-
mately, we reduced time to market by several months.
Along the way, we made performance and reliability im-
provements in our software and hardware architectures
and implementations, and we likely prevented a chip turn
or two, which would have cost significant time to market.

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United
States and other countries.

Direct 3D  is a U.S. registered trademark of Microsoft Corporation.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

� Go to Next Article
� Go to Journal Home Page

http://www.hp.com/hpj/98may/ma98a7.htm
http://www.hp.com/hpj/journal.html

