
19 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

The DirectModel Toolkit: Meeting the 3D
Graphics Needs of Technical Applications

The increasing use of 3D modeling for highly complex mechanical designs has

led to a demand for systems that can provide smooth interactivity with 3D

models containing millions or even billions of polygons.

DirectModel* is a toolkit for creating technical 3D graphics applications.

Its primary objective is to provide the performance necessary for interactive

rendering of large 3D geometry models containing millions of polygons.

DirectModel is implemented on top of traditional 3D graphics applications

programming interfaces (APIs), such as Starbase or OpenGL . It provides the

application developer with high-level 3D model management and advanced

geometry culling and simplification techniques. Figure 1 shows DirectModel’s

position within the architecture of a 3D graphics application.

This article discusses the role of 3D modeling in design engineering today, the

challenges of implementing 3D modeling in mechanical design automation

(MDA) systems, and the 3D modeling capabilities of the DirectModel toolkit.

Visualization in Technical Applications

The Role of 3D Data

3D graphics is a diverse field that is enjoying rapid progress on many fronts.

Significant advances have been made recently in photorealistic rendering,

animation quality, low-cost game platforms, and state-of-the-art immersive

* DirectModel was jointly developed by Hewlett-Packard and Engineering Animation Incorporated of Ames, Iowa.

Figure 1

Application architecture.

Application DirectModel

Core
Graphics

API
(OpenGL)

System
Hardware

and
Software

���	� �� ����

����	� �� �	����

���	� �� ����

With HP since 1982, Brian

Cripe is a project manager

at the HP Corvallis Imaging

Operation. He is responsible for DirectModel

relationships with developers, Microsoft , and

Silicon Graphics . He has worked on the HP

ThinkJet and DeskJet printers and the Common

Desktop Environment. He received a BSEE

in 1982 from Rice University. Brian was born

in Anapolis, Brazil, is married and has two

daughters.

����	� �� �	����

Thomas Gaskins was the

project leader for the

DirectModel project at the

HP Corvallis Imaging Operation. With HP since

1995, he received a BS degree in mechanical

engineering (1993) from the University of

California at Santa Barbara. He specialized in

numerical methods. His professional interests

include 3D graphics and software architecture.

20 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

Figure 2

A low-resolution image of a 3D model of an engine
consisting of 150,000 polygons.

virtual reality* applications. The Internet is populated
with 3D virtual worlds and software catalogs are full of
applications for creating them. An example of a 3D model
is shown in Figure 2.

What do these developments mean for the users of tech-
nical applications (the scientists and engineers who pio-
neered the use of 3D graphics as a tool for solving com-
plex problems)? In many ways this technical community
is following the same trends as the developers and users
of nontechnical applications such as 3D games and inter-
active virtual worlds. They are interested in finding less
expensive systems for doing their work, their image
quality standards are rising, and their patience with poor
interactive performance is wearing thin.

However, there are other areas where the unique aspects
of 3D data for technical applications create special require-
ments. In many applications the images created from the
3D data that are displayed to the user are the goal. For
example, the player of a game or the pilot in a flight simu-
lator cares a lot about the quality and interactivity of

* Immersive virtual reality is a technology that “immerses” the viewer into a virtual reality
scene with head-mounted displays that change what is viewed as the user’s head rotates
and with gloves that sense where the user’s hand is positioned and apply force feedback.

the images, but cares very little about the data used by the
system to create those images. In contrast, many techni-
cal users of 3D graphics consider their data to be the most
important component. The goal is to create, analyze, or
improve the data, and 3D rendering is a useful means to
that end.

This key distinction between data that is the goal itself
and data that is a means to an end leads to major differ-
ences in the architectures and techniques for working with
those data sets.

3D Model Complexity

Understanding the very central role that data holds for
the technical 3D graphics user immediately leads to the
questions of what is that data and what are the significant
trends over time? The short answer is that the size of the
data is big and the amount and complexity of that data is
increasing rapidly. For example, a mechanical engineer
doing stress analysis may now be tackling problems
modeled with millions of polygons instead of the thou-
sands that sufficed a few years ago.

The trends in the mechanical design automation (MDA)
industry are good examples of the factors causing this
growth. In the not-too-distant past mechanical design was
accomplished using paper and pencil to create part draw-
ings, which were passed on to the model shop to create
prototype parts, and then they were assembled into proto-
type products for testing. The first step in computerizing
this process was the advent of 2D mechanical drafting
applications that allowed the mechanical engineers to
replace their drafting boards with computers. However,
the task was still to produce a paper drawing to send to
the model shop. The next step was to replace these 2D
drafting applications with 3D solid modelers that could
model the complete 3D geometry of a part and support
tasks such as static and dynamic design analysis to find
such things as the stress points when the parts move. This
move to 3D solid modeling has had a big impact at many
companies as a new technique for designing parts. How-
ever, in many cases it has not resulted in a fundamental
change to the process for designing and manufacturing
whole products.

Advances. In the last few years advances in the mechan-
ical design automation industry have increasingly
addressed virtual prototyping and other whole-product

21 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

Fahrenheit

Hewlett-Packard, Microsoft, and Silicon Graphics are collabo-
rating on a project, code-named “Fahrenheit,” that will define
the future of graphics technologies. Based on the creation of a
suite of APIs for DirectX on the Windows and UNIX operat-
ing systems, the Fahrenheit project will lead to a common,
extensible architecture for capitalizing on the rapidly expand-
ing marketplace for graphics.

Fahrenheit will incorporate the Microsoft Direct3D and Direct-
Draw APIs with complementary technologies from HP and
Silicon Graphics. HP is contributing DirectModel to this effort
and is working with Microsoft and Silicon Graphics to define
the best integration of the individual technologies.

design issues. This desire to create new tools and
processes that allow a design team to design, assemble,
operate, and analyze an entire product in the computer is
particularly strong at companies that manufacture large
and complex products such as airplanes, automobiles,
and large industrial plants. The leading-edge companies
pioneering these changes are finding that computer-based
virtual prototypes are much cheaper to create and easier
to modify than traditional physical prototypes. In addition
they support an unprecedented level of interaction among
multiple design teams, component suppliers, and end users
that are located at widely dispersed sites.

This move to computerized whole-product design is in
turn leading to many new uses of the data. If the design
engineers can interact online with their entire product,
then each department involved in product development
will want to be involved. For example, the marketing
department wants to look at the evolving design while
planning their marketing campaign, the manufacturing
department wants to use the data to ensure the product’s
manufacturability, and the sales force wants to start
showing it to customers to get their feedback.

These tasks all drive an increased demand for realistic
models that are complete, detailed, and accurate. For
example, mechanical engineers are demanding new levels
of realism and interactivity to support tasks such as posi-
tioning the fasteners that hold piping and detecting inter-
ferences created when a redesigned part bumps into one
of the fasteners. This is a standard of realism that is very
different from the photorealistic rendering requirements
of other applications and to the technical user, a higher
priority.

Larger Models . These trends of more people using better
tools to create more complete and complex data sets
combine to produce very large 3D models. To under-
stand this complexity, imagine a complete 3D model of
everything you see under the hood of your car. A single
part could require at least a thousand polygons for a de-
tailed representation, and a product such as an automo-
bile is assembled from thousands of parts. Even a small
product such as an HP DeskJet printer that sits on the
corner of a desk requires in excess of 300,000 triangles1

for a detailed model. A car door with its smooth curves,
collection of controls, electric motors, and wiring har-
ness can require one million polygons for a detailed
model—the car’s power train can consist of 30 million
polygons.2

These numbers are large, but they pale in comparison to
the size of nonconsumer items. A Boeing 777 airplane
contains approximately 132,500 unique parts and over
3,000,000 fasteners,3 yielding a 3D model containing more
than 500,000,000 polygons.4 A study that examined the
complexity of naval platforms determined that a sub-
marine is approximately ten times more complex than
an airplane, and an aircraft carrier is approximately ten
times more complex than a submarine.5 3D models con-
taining hundreds of millions or billions of polygons are
real today.

As big as these numbers are, the problem does not stop
there. Designers, manufacturers, and users of these com-
plex products not only want to model and visualize the
entire product, but they also want to do it in the context
of the manufacturing process and in the context in which
it is used. If the ship and the dry dock can be realistically

22 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

modeled and combined, it will be far less expensive to
find and correct problems before they are built.

Current System Limitations

If the task faced by technical users is to interact with very
large 3D models, how are the currently available systems
doing? In a word, badly. Clearly the graphics pipeline
alone is not going to solve the problem even with hard-
ware acceleration. Assuming that rendering performance
for reasonable interactivity must be at least 10 frames per
second, a pipeline capable of rendering 1,000,000 poly-
gons per second has no hope of interactively rendering
any model larger than 100,000 polygons per frame. Even
the HP VISUALIZE fx6, the world’s fastest desktop graph-
ics system, which is capable of rendering 4.6 million
triangles per second, can barely provide 10 frames per
second interactivity for a complete HP DeskJet printer
model.

This is a sobering reality faced by many mechanical
designers and other technical users today. Their systems
work well for dealing with individual components but
come up short when facing the complete problem.

Approaches to Solving the Problem

There are several approaches to solve the problem of ren-
dering very complex 3D models with interactive perfor-
mance. One approach is to increase the performance
of the graphics hardware. Hewlett-Packard and other
graphics hardware vendors are investing a lot of effort
in this approach. However, increasing hardware perfor-
mance alone is not sufficient because the complexity
of many customers’ problems is increasing faster than
gains in hardware performance. A second approach
that must also be explored involves using software algo-
rithms to reduce the complexity of the 3D models that
are rendered.

Complex Data Sets

To understand the general data complexity problem, we
must examine it from the perspective of the application
developer. If a developer is creating a game, then it is
perfectly valid to search for ways to create the imagery
while minimizing the amount of data behind it. This ap-
proach is served well by techniques such as extensive

use of texture maps on a relatively small amount of ge-
ometry. However, for an application responsible for pro-
ducing or analyzing technical data, it is rarely effective to
improve the rendering performance by manually altering
and reducing the data set. If the data set is huge, the ap-
plication must be able to make the best of it during 3D
rendering. Unfortunately, the problem of exponential
growth in data complexity cannot be solved through
incremental improvements to the performance of the
current 3D graphics architectures—new approaches are
required.

Pixels per Polygon

Although the problem of interactively rendering large 3D
models on a typical engineering workstation is challenging,
it is not intractable. If the workstation’s graphics pipeline
is capable of rendering a sustained 200,000 polygons per
second (a conservative estimate), then each frame must
be limited to 20,000 polygons to maintain 10 frames per
second. A typical workstation with a 1280 by 1024 moni-
tor provides 1,310,720 pixels. To cover this screen com-
pletely with 20,000 polygons, each polygon must have an
average area of 66 pixels. A more realistic estimate is that
the rendered image covers some subset of the screen, say
75 percent, and that several polygons, for example four,
overlap on each pixel, which implies each polygon must
cover an area of approximately 200 pixels.

On a typical workstation monitor with a screen resolution
of approximately 100 pixels per inch, these polygons are a
bit more than 0.1-inch on a side. Polygons of this size will
create a high enough quality image for most engineering
tasks. This image quality is even more compelling when
you consider that it is the resolution produced during
interactive navigation. A much higher-quality image can
be rendered within a few seconds when the user stops
interacting with the model. Thus, today’s 3D graphics
workstations have enough rendering power to produce
the fast, high-quality images required by the technical
user.

Software Algorithms

The challenge of interactive large model rendering is sort-
ing through the millions of polygons in the model and
choosing (or creating) the best subset of those polygons

23 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

Figure 3

Geometry culling.

Geometry Outside
the View Frustum

Occluded
Geometry

Visible
Geometry

that can be rendered in the time allowed for the frame.
Algorithms that perform this geometry reduction fall into
two broad categories: culling, which eliminates unneces-
sary geometry, and simplification, which replaces some
set of geometry with a simpler version.

Figure 3 illustrates two types of culling: view frustum

culling (eliminating geometry that is outside of the user’s
field of view) and occlusion culling (eliminating geometry
that is hidden behind some other geometry). The article
on page 9 describes the implementation of occlusion
culling in the VISUALIZE fx graphics accelerator.

Figures 4 and 5 show two types of simplification. Figure

4 shows a form of geometry simplification called tessella-

tion, which takes a mathematical specification of a smooth
surface and creates a polygonal representation at the spe-
cified level of resolution.

Figure 4

Geometry tessellation.

Smooth
Curve

Fine
Tessellation

Coarse
Tessellation

The decimation simplification technique is shown in
Figure 5. This technique reduces the number of polygons
in a model by combining adjacent faces and edges.

The simplified geometry created by these algorithms is
used by the level of detail selection algorithms, which
choose the appropriate representation to render for each
frame based on criteria such as the distance to the object.

Most 3D graphics pipelines render a model by rendering
each primitive such as a polygon, line, or point individu-
ally. If the model contains a million polygons, then the
polygon-rendering algorithm is executed a million times.
In contrast, these geometry reduction algorithms must
operate on the entire 3D model at once, or a significant
portion of it, to achieve adequate gains. View frustum
culling is a good example—the conventional 3D graphics
pipeline will perform this operation on each individual
polygon as it is rendered. However, to provide any signifi-
cant benefit to the large model rendering problem, the
culling algorithm must be applied globally to a large chunk
of the model so that a significant amount of geometry can
be eliminated with a single operation. Similarly, the geo-
metry simplification algorithms can provide greatest gains
when they are applied to a large portion of the model.

Desired Solution

The performance gap (often several orders of magnitude)
between the needs of the technical user and the capabili-
ties of a typical system puts developers of technical appli-
cations into an unfortunate bind. Developers are often
experts in some technical domain that is the focus of their
applications, perhaps stress analysis or piping layout.
However, the 3D data sets that the applications manage
are exceeding the graphics performance of the systems

Figure 5

Geometry decimation.

Decimated GeometryFull Detail Geometry

24 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

Figure 6

Extended graphics pipeline.

Rasterization ImageApplication Simplification Culling Transformation Lighting and
Shading

Model-Based Operations Primitive-Based Operations

they run on. Developers are faced with the choice of ob-
taining the 3D graphics expertise to create a sophisticated
rendering architecture for their applications, or seeing
their applications lag far behind their customers’ needs
for large 3D modeling capacity and interactivity.

To develop applications with the performance demanded
by their customers, developers need access to graphics
systems that provide dramatic performance gains for their
tasks and data. As shown in Figure 6, the graphics pipe-
line available to the applications must be extended to
include model-based optimizations, such as culling and
simplification, so that it can support interactive rendering
of very large 3D models. When the graphics system pro-
vides this level of performance, application developers
are free to focus on improving the functionality of their
applications without concern about graphics perfor-
mance. The article on page 9 describes the primitive-
based operations of the pipeline shown in Figure 6.

DirectModel Capabilities

DirectModel is a toolkit for creating technical 3D graphics
applications. The engineer or scientist who must create,
visualize, and analyze massive amounts of 3D data does
not interact directly with DirectModel. DirectModel pro-
vides high-level 3D model management of large 3D geo-
metry models containing millions of polygons. It uses
advanced geometry simplification and culling algorithms
to support interactive rendering. Figure 1 shows that
DirectModel is implemented on top of traditional 3D
graphics APIs such as Starbase or OpenGL. It extends,
but does not replace, the current software and hardware
3D rendering pipeline.

Key aspects of the DirectModel toolkit include:

� A Focus on the needs of technical applications that deal
with large volumes of 3D geometry data

� Capability for cross-platform support of a wide variety
of technical systems

� Extensive support of MDA applications (for example,
translators for common MDA data types).

Technical Data

As discussed above, the underlying data is often the most
important item to the user of a technical application. For
example, when designers select parts on the screen and
ask for dimensions, they want to know the precise engi-
neering dimension, not some inexact dimension that re-
sults when the data is passed through the graphics system
for rendering. DirectModel provides the interfaces that
allow the application to specify and query data with this
level of technical precision.

Technical data often contains far more than graphical in-
formation. In fact, the metadata such as who created the
model, what it is related to, and the results of analyzing it
is often much larger than the graphical data that is ren-
dered. Consequently DirectModel provides the interfaces
that allow an application to create the links between the
graphical data and the vast amount of related metadata.

Components of large models are often created, owned,
and managed by people or organizations that are loosely
connected. For example, one design group might be
responsible for the fuselage of an airplane while a sepa-
rate group is responsible for the design of the engines.
DirectModel supports this multiteam collaboration
by allowing a 3D model to be assembled from several
smaller 3D models that have been independently defined
and optimized.

Multiple Representations of the Model

The 3D model is the central concept of DirectModel—the
application defines the model and DirectModel is respon-
sible for high-performance optimization and rendering of

25 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

Figure 7

Logical and spatial organization.

Car

Power Train

Engine

Differential

BodyBody

BodyHood

BodyTrunk

Car

BodyHood

Engine

BodyTrunk

Differential

BodyFront

BodyBack

Logical Relationships Spatial Relationships

it. The 3D model is defined hierarchically by the model
graph, which consists of a set of nodes linked together
into a directed, acyclic graph. However, a common prob-
lem that occurs when creating a model graph is the con-
flict between the needs of the application needs and the
graphics system. The application typically needs to orga-
nize the model based on the logical relationships be-
tween the components, whereas the graphics system
needs to organize the model based on the spatial rela-
tionships so that it can be efficiently simplified, culled,
and rendered. Figure 7 shows two model graphs for a car,
one organized logically and one spatially.

Graphics toolkits that use a single model graph for both
the application’s interaction with the model and for ren-
dering the model force the application developer to opti-
mize for one use while making the other use difficult. In
contrast, DirectModel maintains multiple organizations of
the model so that it can simultaneously be optimized for
several different uses. The application is free to organize
its model graph based on its functional requirements
without consideration of DirectModel’s rendering needs.
DirectModel will create and maintain an additional spatial
organization that is optimized for rendering. These multiple
organizations do not significantly increase the memory or

disk usage of DirectModel because the actual geometry,
by far the largest component, is multiply referenced, not
duplicated.

The Problem of Motion

Object motion, both predefined and interactive, is critical
to many technical applications. In mechanical design, for
example, users want to see suspension systems moving,
engines rocking, and pistons and valves in motion. To use
a virtual prototype for manufacturing planning, motion is
mandatory. Assembly sequences can be verified only by
observing the motion of each component as it moves into
place along its prescribed path. Users also want to grab
an object or subassembly and move it through space,
while bumping and jostling the object as it interferes with
other objects in its path. In short, motion is an essential
component for creating the level of realism necessary for
full use of digital prototypes.

DirectModel supports this demand for adding motion to
3D models in several ways. Because DirectModel does not
force an application to create a model graph that is opti-
mized for fast rendering, it can instead create one that is
optimized for managing motion. Parts that are physically
connected in real life can be connected in the model graph,

26 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

allowing movement to cascade easily through all of the
affected parts. In addition, the data structures and algo-
rithms used by DirectModel to optimize the model graph
for rendering are designed for easy incremental update
when some portion of the application’s model graph
changes.

Models as Databases

3D models containing millions of polygons with a rich set
of rendering attributes and metadata can easily require
several gigabytes of data. Models of this size are fre-
quently too big to be completely held in main memory,
which makes it particularly challenging to support
smooth interactivity.

DirectModel solves this problem by treating the model as a
database that is held on disk and incrementally brought in
and out of main memory as necessary. Elements of the
model, including individual level-of-detail representations,
must come from disk as they are needed and removed
from main memory when they are not needed. In this way
memory can be reserved for the geometric representa-
tions currently of interest. DirectModel’s large model
capability has as much to do with rapid and intelligent
database interaction as with rendering optimization.

Interactive versus Batch-Mode Data Preparation

Applications that deal with large 3D models have a wide
range of capabilities. One application may be simply an
interactive viewer of large models that are assembled from
existing data. Another application may be a 3D editor (for
example, a solid modeler) that supports designing me-
chanical parts within the context of their full assembly.
Consequently, an application may acquire and optimize a
large amount of 3D geometry all at once, or the parts of
the model may be created little by little.

DirectModel supports both of these scenarios by allowing
model creation and optimization to occur either interac-
tively or in batch mode. If an application has a great deal
of raw geometry that must be rendered, it will typically
choose to provide a batch-mode preprocessor that builds
the model graph, invokes the sorting and simplification
algorithms, and then saves the results. An interactive appli-
cation can then load the optimized data and immediately
allow the user to navigate through the data. However, if
the application is creating or modifying the elements of
the model at a slow rate, then it is reasonable to sort and
optimize the data in real time. Hybrid scenarios are also

possible where an interactive application performs incre-
mental optimization of the model with any spare CPU
cycles that are available.

The important thing to note in these scenarios is that
DirectModel does not make a strong distinction between
batch and interactive operations. All operations can be
considered interactive and the application developer is
free to employ them in a batch manner when appropriate.

Extensibility

Large 3D models used by technical applications have
different characteristics. Some models are highly regular
with geometry laid out on a fixed grid (for example,
rectangular buildings with rectangular rooms) whereas
others are highly irregular (for example, an automobile
engine with curved parts located at many different
orientations). Some models have a high degree of occlu-
sion where entire parts or assemblies are hidden from
many viewing perspectives. Other models have more
holes through them allowing glimpses of otherwise hid-
den parts. Some models are spatially dense with many
components packed into a tight space, whereas others
are sparse with sizable gaps between the parts.

These vast differences impact the choice of effective opti-
mization and rendering algorithms. For example, highly
regular models such as buildings are amenable to prepro-
cessing to determine regions of visibility (for example,
rooms A through E are not visible from any point in room
Z). However, this type of preprocessing is not very effec-
tive when applied to irregular models such as an engine.
In addition, large model visualization is a vibrant field of
research with innovative new algorithms appearing regu-
larly. The algorithms that seem optimal today may appear
very limiting tomorrow.

DirectModel’s flexible architecture allows application
developers to choose the right combination of techniques,
including creating new algorithms to extend the system’s
capabilities. All of the DirectModel functions, such as its
culling algorithms, representation generators, tessella-
tors, and picking operators, are extensible in this way.
Extensions fit seamlessly into the algorithms they ex-
tend, indistinguishable from the default capabilities in-
herent to the toolkit.

In addition, DirectModel supports mixed-mode rendering
in which an application uses DirectModel for some of its
rendering needs and calls the underlying core graphics

27 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

API directly for other rendering operations. Although Di-
rectModel can fulfill the complete graphics needs of many
applications, it does not require that it be used exclusively.

Multiplatform Support

A variety of systems are commonly used for today’s tech-
nical 3D graphics applications, ranging from high-end
personal computers through various UNIX-based work-
stations and supercomputers. In addition, several 3D
graphics APIs and architectures are either established or
emerging as appropriate foundations for technical applica-
tions. Most developers of technical applications support a
variety of existing systems and must be able to migrate
their applications onto new hardware architectures as the
market evolves.

DirectModel has been carefully designed and implemented
for optimum rendering performance on multiple platforms
and operating systems. It presumes no particular graphics
API and is designed to select at run time the graphics API
best suited to the platform or specified by the application.
In addition, its core rendering algorithms dynamically
adapt themselves to the performance requirements of the
underlying graphics pipeline.

Conclusion

The increasing use of 3D graphics as a powerful tool for
solving technical problems has led to an explosion in the
complexity of problems being addressed, resulting in 3D
models containing millions or even billions of polygons.

Unfortunately, many of the applications and 3D graphics
systems in use today are built on architectures designed
to handle only a few thousands polygons efficiently.
These architectures are incapable of providing inter-
activity with today’s large technical data sets.

This problem has created a strong demand for new graph-
ics architectures and products that are designed for inter-
active rendering of large models on affordable systems.
Hewlett-Packard is meeting this demand with Direct-
Model, a cross-platform toolkit that enables interaction
with large, complex, 3D models.

References

1. Data obtained from design engineers at the Hewlett-Packard
Vancouver Division.

2. Estimates provided by automotive design engineers.

3. S.H. Shokralla, “The 21st Century Jet: The Boeing 777 Multi-
media Case Study,”

 http://pawn.berkely.edu/~shad/b777/main.html

4. E. Brechner, “Interactive Walkthrough of Large Geometric
Databases,” SIGGRAPH tutorial, 1995.

5. J.S. Lombardo, E. Mihalak, and S.R. Osborne, “Collaborative
Virtual Prototype, John Hopkins APL Technical Digest, Vol. 17,
no. 3, 1996.

UNIX is a registered trademark of The Open Group.

Microsoft, MS-DOS, Windows, and Windows NT are U.S. registered trademarks of Microsoft
Corporation.

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United
States and other countries.

� Go to Next Article
� Go to Journal Home Page

http://www.hp.com/hpj/98may/ma98a3.htm
http://www.hp.com/hpj/journal.html

