
9 May 1998 • The Hewlett-Packard JournalArticle 2 •  1998 Hewlett Packard Company

An Overview of the HP OpenGL Software
Architecture

OpenGL is a hardware-independent specification of a 3D graphics programming

interface. This specification has been implemented on many different vendors’

platforms with different CPU types and graphics hardware, ranging from

PC-based board solutions to high-performance workstations.

The OpenGL API defines an interface (to graphics hardware) that deals

entirely with rendering 3D primitives (for example, lines and polygons). The

HP implementation of the OpenGL standard does not provide a one-to-one

mapping between API functions and hardware capabilities. Thus, the software

component of the HP OpenGL product fills the gaps by mapping API functions

to OpenGL-capable systems.

Since OpenGL is an industry-standard graphics API, much of the differentiating

value HP delivers is in performance, quality, reliability, and time to market.

The central goal of the HP implementation is to ship more performance and

quality much sooner.

What is OpenGL?

OpenGL differs from other graphics APIs, such as Starbase, PHIGS, and PEX

(PHIGS extension in X), in that it is vertex-based as opposed to primitive-

based. This means that OpenGL provides an interface for supplying a single

vertex, surface normal, color, or texture coordinate parameter in each call.

Several of the calls between an OpenGL glBegin and glEnd pair define

a primitive that is then rendered. Figure 1 shows a comparison of the

different API call formats used to render a rectangle. In PHIGS a single call

could render a primitive by referencing multiple vertices and their associated

data (such as normals and color) as parameters to the call. This difference in

procedure calls per primitive (one versus eight for a shaded triangle) posed

a performance challenge for our implementation.

	���� ��
�������

����� �� ����

������� �� ������

������� �� �����!����������

����� �� �������

10 May 1998 • The Hewlett-Packard JournalArticle 2 •  1998 Hewlett Packard Company

Figure 1

Graphics API call comparison.

Starbase OpenGL

glBegin(GL_QUADS);
glNormal(...);
glVertex(...);
glNormal(...);
glVertex(...);
glNormal(...);
glVertex(...);
glNormal(...);
glVertex(...);
glEnd();

polygon3d(...);

PEXFillAreaSetWithData(...);

PEXlib

An OpenGL implementation consists of the following
elements:

� A rendering library (GL) that implements the OpenGL
specification (the rendering pipeline)

� A utility library (GLU) that implements useful utility
functions that are layered on top of OpenGL (for
example, surfaces, quadratics, and tessellation functions)

� An interface to the system’s windowing package, includ-
ing GLX for X Window Systems on the UNIX operating
system and WGL for Microsoft Windows .

Implementation Goals

The goals we defined for the OpenGL program that helped
to shape our implementation were to:

� Achieve and sustain long term price/performance leader-
ship for OpenGL applications running on HP platforms

� Develop a scalable architecture that supports OpenGL
on a wide range of HP platforms and graphics devices.

The rest of this article will provide more details about
our OpenGL implementation and show how these goals
affected our system design.

OpenGL API

In general, OpenGL defines a traditional 3D pipeline for
rendering 3D primitives. This pipeline takes 3D coordi-
nates as input, transforms them based on orientation or
viewpoint, lights the resulting coordinates, and then ren-
ders them to the frame buffer (Figure 2).

To implement and control this pipeline, the OpenGL API
provides two classes of entry points. The first class is
used to create 3D geometry as a combination of simple
primitives such as lines, triangles, and quadrilaterals.
The entry points that make up this class are referred to
as the vertex API, or VAPI, functions. The second class,
called the state class, manipulates the OpenGL state used
in the different rendering pipeline stages to define how to
operate (transform, clip, and so on) on the primitive data.

VAPI Class

OpenGL contains a series of entry points that when used
together provide a powerful way to build primitives. This
flexible interface allows an application to provide primi-
tive data directly from its private data structures rather
than requiring it to define structures in terms of what the
API requires, which may not be the format the application
requires.

Primitives are created from a sequence of vertices. These
vertices can have associated data such as color, surface
normal, and texture coordinates. These vertices can be
grouped together and assigned a type, which defines how
the vertices are connected and how to render the resulting
primitive.

The VAPI functions available to define a primitive include
glVertex (specify its coordinate), glNormal (define a surface
normal at the coordinate), glColor (assign a color to the
coordinate), and several others. Each function has several
forms that indicate the data type of the parameter (for
example, int, short, and float), whether the data is passed
as a parameter or as a pointer to the data, and whether
the data is one-, two-, three-, or four-dimensional. Alto-
gether there are over 100 VAPI entry points that allow for
maximum application flexibility in defining primitives.

The VAPI functions glBegin and glEnd are used to create
groups of these vertices (and associated data). glBegin
takes a type parameter that defines the primitive type and
a count of vertices. The type can be point, line, triangle,

Figure 2

Graphics pipeline.

Transform Lighting Rasterize
Pixels

3D
Coordinates

11 May 1998 • The Hewlett-Packard JournalArticle 2 •  1998 Hewlett Packard Company

triangle strip, quadrilateral, or polygon. Based on the type
and count, the vertices are assembled together as primi-
tives and sent down the rendering pipeline.

For added efficiency and to reduce the number of proce-
dure calls required to render a primitive, vertex arrays
were added to revision 1.1 of the OpenGL specification.
Vertex arrays allow an application to define a set of ver-
tices and associated data before their use. After the vertex
data is defined, one or more rendering calls can be issued
that reference this data without the additional calls of
glBegin, glEnd, or any of the other VAPI calls.

Finally, OpenGL provides several rendering routines that
do not deal with 3D primitives, but rather with rectangular
areas of pixels. From OpenGL, an application can read,
copy, or draw pixels to or from any of the OpenGL
image, depth, or texture buffers.

State Class

The state class of API functions manipulates the OpenGL
state machine. The state machine defines how vertices
are operated on as they pass through the rendering pipe-
line. There are over 100 functions in this class, each con-
trolling a different aspect of the pipeline. In OpenGL most
state information is orthogonal to the type of primitive
being operated on. For example, there is a single primitive
color rather than a specific line color, polygon color, or
point color. These state manipulation routines can be
grouped as:

� Coordinate transformation

� Coloring and lighting

� Clipping

� Rasterization

� Texture mapping

� Fog

� Modes and execution.

Pipeline

Coordinate data (such as vertex, color, and surface nor-
mal) can come directly from the application, indirectly
from the application through the use of evaluators,* or
from a stored display list that the application had pre-
viously created. The coordinates flow into the pipeline as

* Evaluators are functions that derive coordinate information based on parametric curves
or surfaces and basic functions.

discrete points and are operated on (transformed) individ-
ually. At a certain point in the pipeline the vertices are
assembled into primitives, and they are operated on at the
primitive level (for example, clipping). Next, the primi-
tives are rasterized into fragments in which operations
like depth testing occur on each fragment. The final result
is pixels that are written into the frame buffer. This more
complex OpenGL pipeline is shown in Figure 3.

Conceptually, the transform stage takes application-
specified object-space coordinates and transforms them
to eye-space coordinates (the space that positions the
object with respect to the viewer) with a model-view
matrix. Next, the eye coordinates are projected with a

Figure 3

OpenGL pipeline.

Current
Normal

Current
Color

glNormalglVertex glColor glTextCoord

Lighting
and Coloring

Model-View
Matrix

Texture
Matrix

Primitive Assembly

Clipping
Projection

Matrix

Rasterization
Texture
Matrix

Per-Fragment
Operation

Frame
Buffer

Vertices

Primitives

Fragments

Pixels

Transform

Lighting

Rasterize

Current Text
Coordinates

12 May 1998 • The Hewlett-Packard JournalArticle 2 •  1998 Hewlett Packard Company

Figure 4

Transformation from object-space to window coordinates.

Object
Coordinates

Model-View
Matrix

Eye
Coordinates

Clip
CoordinatesProjection

Matrix
Perspective

Divide
Viewport
Transform

Normalized
Device

Coordinates
[–1,1]

Window
Coordinates

XO
YO
ZO
WO

XW
YW
ZW
WW

Lighting and Model
Clipping Applied

View Volume
Clipping Applied

projection matrix, divided by the perspective, and then
transformed by the viewport matrix to get them to screen
space (relative to a window). This process is summarized
in Figure 4.

In the lighting stage, a color is computed for each vertex
based on the lighting state. The lighting state consists of
a number of lights, the type of each light (such as posi-
tional or spotlight), various parameters of each light (for
example, position, pointing direction, or color), and the
material properties of the object being lit. The calculation
takes into consideration, among other things, the light
state and the distance of the coordinate to each light, re-
sulting in a single color for the vertex.

In rasterization, pixels are written based on the primitive
type, and the pixel value to be written is based on various
rasterization states (such as texture mapping enabled, or
polygon stipple enabled). OpenGL refers to the resulting
pixel value as a fragment because in addition to the pixel
value, there is also coverage, depth, and other state infor-
mation associated with the fragment. The depth value is
used to determine the visibility of the pixel as it interacts
with existing objects in the frame buffer. While the cover-
age, or alpha, value blends the pixel value with the exist-
ing value in the frame buffer.

Software Architecture

One of the main design goals for the HP OpenGL software
architecture was to maximize performance where it
would be most effective. For example, we decided to
focus on reducing overhead to hardware-accelerated
paths and to base design decisions on application use,
minimizing the effort and cost required to support future
system hardware. The resulting architecture is composed
of two major components: a device-independent module

and a device-specific module. A simple block diagram is
shown in Figure 5.

The dispatch component is responsible for handling
OpenGL API calls and sending them to the appropriate
receiver. OpenGL can be in one of the following modes:

� Protocol mode in which API calls are packaged up and
forwarded to a remote system for execution

� Display list creation mode in which API calls are stored
in a display list for later execution

� Direct rendering mode in which API calls are intended
for immediate rendering on the local screen.

Figure 5

OpenGL architecture.

Device-Independent
Module

API

Dispatch Module

Hardware

Device-Specific
Module

Streamlines

13 May 1998 • The Hewlett-Packard JournalArticle 2 •  1998 Hewlett Packard Company

The primary application path of any importance is the
immediate rendering path. While in direct rendering mode
the performance of all functions is important, but the per-
formance of the VAPI calls is even more critical because
of the increased frequency of rendering calls over other
types of calls, like state setting. Any overhead in transfer-
ring application rendering commands to the hardware
reduces overall performance significantly. See the “System
Design Results” section in this article on page 14 for a dis-
cussion on some of these issues.

The device-independent module is the target for all the
OpenGL state manipulation calls, and in some situations,
for VAPI calls such as display list or protocol generation.
This module contains state management, all system con-
trol logic, and a complete software implementation of
the OpenGL rendering pipeline up to the rasterization
stage, which is used in situations where the hardware
does not support an OpenGL feature. The device in-
dependent module is made up of several submodules,
including:

� GLX (OpenGL GLX support module) for handling win-
dow system dependent components, including context
management, X Window System interactions, and proto-
col generation

� SUM (system utilities module) for handling system
dependent components, including system interactions,
global state management, and memory management

� OCM (OpenGL control module) for handling OpenGL
state management, parameter checking, state inquiry
support, and notification of state changes to the appro-
priate module

� PCM (pipeline control module) for handling graphics
pipeline control, state validation, and the software
rendering pipeline

� DLM (display list module) for handling display list
creation and execution.

The device-specific module is basically an abstracted
hardware interface that resides in a separate shared li-
brary. Based on what hardware is available, the device-in-
dependent code dynamically loads the appropriate de-
vice-specific module. In general the device-specific
module is called only by the device-independent module,
never by the API, and converts the requests to hardware-
specific operations (register loads, operation execute). In

addition to a device-specific module for the VISUALIZE
fx series of graphics hardware, there is a virtual memory
driver device-specific module for handling OpenGL op-
erations on GLX pixmaps (virtual-memory-based image
buffers) or for rendering to hardware that does not sup-
port OpenGL semantics.

The final key component of the architecture is stream-
lines. Streamlines are part of the device-specific module
but are unique in that they are associated directly with the
API. On geometry-accelerated devices like the VISUALIZE
fx series, the hardware can support the full set of VAPI
calls. To minimize overhead and maximize performance,
the calls are targeted to optimized routines that communi-
cate directly with the hardware. In many cases these rou-
tines are coded in PA RISC 1.1 or PA RISC 2.0 assembly
language or C. At initialization time the appropriate rou-
tines are loaded in the dispatch table based on the system
type and are dynamically selected at run time.

An important thing to understand about streamlines is
that they can only be called when the current state is
“clean” and the hardware supports the current rendering
mode. An example of “not clean” is when the viewing
matrix has been changed, and the hardware needs to be
updated with the current transformation matrix. Because
the application can make several different calls to manip-
ulate the matrix, computing the state based on the view-
ing matrix and loading the hardware is deferred until it is
actually needed. For example, when a primitive is to be
rendered (initiated via a glBegin call), the state is made
clean (validated) by the device-independent code and sub-
sequent VAPI calls can be dispatched directly to the
streamlines. Another situation in which streamlines can-
not be called is when the hardware does not support a
feature, such as texture mapping in the VISUALIZE fx2

display hardware. In this situation the VAPI entry points
do not target the streamlines but rather the device-inde-
pendent code that implements what is called a general
path, or in other terms, a software rendering pipeline.

Three-Process Model

Under the X Window System on the UNIX operating sys-
tem, the OpenGL architecture uses a three-process model
to support the direct and indirect semantics of OpenGL.
In our implementation, we have leveraged our existing
direct hardware access (DHA) technology to provide in-
dustry-leading local rendering performance. This has been

14 May 1998 • The Hewlett-Packard JournalArticle 2 •  1998 Hewlett Packard Company

Figure 6

Three-process rendering model.

Virtual
Memory
Module

Device-
Specific
Module

OpenGL
GLX

OpenGL API

Application

Device-Specific
Module

OpenGL

OpenGL API

OpenGL Daemon

Hardware

Indirect Rendering

Device-Independent X

Dispatch Module

Device-Independent X

HardwareHardware

DHA Rendering Virtual Rendering

Process 1
Application

Process 2
X Server

Process 3
OpenGL Daemon

GLX Protocol

X Protocol

GLX Protocol

DHA VGL Protocol

coupled with two distinct remote rendering modes, making
our OpenGL implementation one of the most flexible im-
plementations in the industry. These rendering modes are
based upon the three-process rendering model shown in
Figure 6. This model supports three rendering modes:
direct, indirect, and virtual.

Direct Rendering. Direct rendering through DHA provides
the highest level of OpenGL performance and is used
whenever an OpenGL application is connected to a local
X server running on a workstation with VISUALIZE fx
graphics hardware. For all but a few operations, the appli-
cation process communicates directly with the graphics
hardware, bypassing the interprocess communication
overhead between the application and the X server.

Indirect Rendering (Protocol). Indirect rendering is used
primarily for remote operation when the target X server is
running on a different workstation than the user applica-
tion. In this mode, the OpenGL API library emits GLX
protocol which is interpreted by a receiving X server that
supports the GLX extension. The receiving server can be
HP, Sun Microsystems, Silicon Graphics International,
or any other X server that supports the GLX server exten-
sion. In the HP OpenGL implementation, the receiving
X server passes nearly all GLX protocol directly on to an
OpenGL daemon process that uses DHA for maximum
performance. Note that immediate mode rendering per-
formance through protocol can be severely limited by the
time it takes to send geometric data over the network.
However, when display lists are used, geometric data is

cached in the OpenGL daemon and remote OpenGL ren-
dering can be as fast or sometimes even faster than local
DHA rendering.

Virtual Rendering. As a value-added feature, HP OpenGL
also provides a virtual GL rendering mode not available in
other OpenGL implementations. Virtual rendering allows
an OpenGL application to be displayed on any X server or
X terminal even if the GLX extension is not supported on
that server. This is accomplished by rendering through the
virtual memory driver to local memory and then issuing
the standard XPutImage protocol to display images on the
target screen. Although flexible, virtual GL is typically the
slowest of the OpenGL rendering modes. However, virtual
GL rendering performance can be increased significantly
by limiting the size of the output window

System Design Results

To deliver industry-leading OpenGL performance, we
combined graphics hardware, libraries, and drivers. The
hardware is the core enabler of performance. Although
the excellence of each part is important, the overall system
design is even more so. How well the operating system,
compilers, libraries, drivers, and hardware fit together
in the system design determines the overall result. We
worked closely with teams in four HP R&D labs to opti-
mize the system design, apply our design values to parti-
tioning the system, balance performance bottlenecks, and
simplify the overall architecture and interfaces. The fol-
lowing section describes some examples of applying our

15 May 1998 • The Hewlett-Packard JournalArticle 2 •  1998 Hewlett Packard Company

system design principles to the most important aspects
of 3D graphics applications.

Improving OpenGL Application Performance

OpenGL required a radical change from the existing
(legacy) HP graphics APIs. In analyzing the model for
our legacy graphics APIs, we realized that the same model
would have considerable overhead for OpenGL, which re-
quires many more procedure calls. Figure 1 compares the
calls required to generate the same shaded quadrilateral.

To have a competitive OpenGL, we needed to reduce or
eliminate function calls and locking overhead. We did this
with two system design initiatives called fast procedure

calls and implicit device locking.

Fast Procedure Calls. Two of our laboratories (the Graph-
ics Systems Laboratory and the Cupertino Language Labo-
ratory) worked together to create a specification for a
new, faster calling convention for making calls to shared
library components. This reduced the cost to one-fourth
the cost of the previous mechanism.

OpenGL is a state machine. When the application calls an
OpenGL function, different things happen depending on
the current state. We also wanted to support different de-
vices with varying degrees of support in the same OpenGL
library. We needed a dynamic method of dispatching API
function calls to the correct code to enable the appropriate
functionality without compromising performance. Given
this requirement, a naive implementation of OpenGL
might define each of its API functions like the following:

void glVertex3fv (const GLfloat *v)

{

 switch (context.whichFunction)

 {

 case HW_STREAMLINE:

 HW_STREAMLINE_glVertex3fv(v);

 break;

 case GENERAL_PATH:

 GENERAL_PATH_glVertex3fv(v);

 break;

 case GLX_PROTOCOL:

 GLX_PROTOCOL_glVertex3fv(v);

 break;

 case diSPLAY_LIST:

 diSPLAY_LIST_glVertex3fv(v);

 break;

 ...

 }

}

However, this is a very impractical implementation in
terms of both performance and software maintainability.
We decided that the most efficient method of achieving
this kind of dynamic dispatching was to retarget the API
function calls at their source—the application code. Any
call into a shared library is really a call through a pointer.
The procedure name that the application calls is associ-
ated with a particular pointer. Conceptually, what we
needed was a mechanism to manage the contents of
those pointers. To accomplish this, we needed more assis-
tance from the engineers in the compiler and linker
groups.

In simplified terms, the OpenGL library maintains a proce-
dure link table. Each entry in the procedure link table is
associated with a particular function name and is com-
posed of two pointers. One points to the code that is to
be called, and the other, the link table pointer, points to
the table used by shared library code (known as PIC, or
position-independent code) to locate global data. When
the compiler generates a call to an OpenGL function, it
loads the appropriate registers with the two fields in the
associated procedure link table entry and then branches
to the function. Since OpenGL controls the contents of
the procedure link table, it can change the contents of
these fields during execution. This allows OpenGL to
choose the appropriate code based on the OpenGL state
dynamically.

For example, assume that we have a graphics device
that, except for texture mapping, supports the OpenGL
pipeline in hardware. In this case the scheduling code
will find texture mapping enabled (meaning that the
device cannot handle texture mapping) and choose the
GENERAL_PATH_glVertex3fv code path, which performs soft-
ware texture mapping. The HW_STREAMLINE_glVertex3fv
code paths are taken if texture mapping is not enabled.

Implicit Device Locking. Graphics devices are a shared
system resource. As such, there must be some control
when an application has access to the graphics device so
that two applications are not attempting to use the device
at the same time. Normally the operating system manages
such shared resources via standard operating system in-
terfaces (open, close, read, write, and ioctl).

However, to get the maximum performance possible
for graphics applications, a user process will access the
graphics device directly through our 3D API libraries,
rather than use the standard operating system interfaces.

16 May 1998 • The Hewlett-Packard JournalArticle 2 •  1998 Hewlett Packard Company

This means that before OpenGL, the HP graphics libraries
had to assume the task of managing shared access to the
graphics device.

Before OpenGL, we used a relatively lightweight fast lock
at the entry and exit of those library routines that actually
accessed the device. With the high frequency of function
calls in OpenGL, performing this lock and unlock step
for each function call would exact a severe performance
penalty, similar to the procedure call problem discussed
earlier.

To solve this problem, HP engineers invented a technique
called implicit device locking. When a process tries to
access the graphics hardware and does not own the
device, a virtual memory protection fault exception will
be generated. The kernel must detect that this protection
fault was an attempted graphics device access instead of
a fault from trying to access something like an invalid
address, a swapped out page, or from doing a copy on a
write page.

The graphics fault alerts the system that there is another
process trying to access the graphics device. The kernel
then makes sure that the graphics device context is saved,
and the graphics context for the next process is restored.
After the graphics context switch is complete, the new
process is allowed to continue with access to the device,

and permission is taken away from all other processes.
This allows the current process that owns the device to
have zero overhead access.

This method removes the requirement that the 3D graphics
API library must explicitly lock the graphics device while
accessing it. This means that the overhead associated
with device locking, which was an order of magnitude
more than with Starbase, is completely eliminated (see
Figure 7).

This dramatic improvement in performance is made pos-
sible by improvements in the HP-UX* kernel and careful
design of the graphics hardware. The basic idea is that
when multiple graphics applications are running, the
HP-UX kernel will ensure that each application gets its
fair share of exclusive time to access the graphics device.

OpenGL was not the only API to benefit from implicit
locking. The generality of the design allowed us to use
the same mechanism to eliminate the locking code from
Starbase as well. Keeping the whole system in mind
while developing this technology allowed us to expand
the benefit beyond the original problem—excessive over-
head from locking for OpenGL.

Figure 7

State count comparison.

Starbase OpenGL

Starting Point

Fast Procedure Calls

Implicit LockingGraphics

Graphics

Graphics

Graphics

Function Calls

Function Calls

Function Call

Function Calls

LockingLocking
Locking

State
Count

17 May 1998 • The Hewlett-Packard JournalArticle 2 •  1998 Hewlett Packard Company

Hardware and Software Trade-offs

Keeping the whole picture in mind allowed us to make
software and hardware trade-offs to simplify the system
design. The criteria were based on performance critical-
ity, frequency of use, system complexity, and factory cost.

For example, the hardware was designed to understand
both OpenGL and Starbase windows. OpenGL requires
the window origin to be in the lower left corner, whereas
Starbase requires it to be in the upper left. Putting the
intelligence in the hardware reduced the overall system
complexity.

Nearly all OpenGL features are hardware accelerated. Of
course, all vertex API formats and dimensions are stream-
lined and accelerated in hardware for maximum primitive
performance. Similarly, all fragment pipeline operations
had to be supported in hardware because fragment opera-
tions touch every pixel and software performance would
not be sufficient. To maximize primitive performance, we
also hardware-accelerated nearly every geometry pipeline
feature. For example, all lighting modes, fog modes, and
arbitrary clip planes are hardware-accelerated. Very few
OpenGL features are not hardware-accelerated.

Based on infrequent use and the ability to reasonably ac-
celerate in software, we implemented the following func-
tions in software: RasterPos, Selection, Feedback, Indexed
Lighting, and Indexed Fog. Infrequent use and factory cost
also encouraged us to implement accumulation buffer
support in software. (Accumulation is an operation that
blends data between the frame buffer and the accumula-
tion buffer, allowing effects like motion blur.)

State Change

Through systems design we achieved dramatic results in
application performance by focusing on the design for
OpenGL state change operations.

Application graphics performance is a function of both
primitive and state change (attributes) performance. We
have designed our OpenGL implementation to maximize
primitive performance and minimize the costs of state
changes.

State changes include all the function calls that modify the
OpenGL modal state, including coordinate transformations,
lighting state, clipping state, rasterization state, and texture
state. State change does not include primitive calls, pixel

operations, display list calls, or current state calls. Cur-
rent state encompasses all the OpenGL calls that can
occur either inside or outside glBegin() and glEnd() pairs
(for example, glColor(), glNormal(), glVertex()).

There are two classes of state changes: fragment pipeline
and geometry pipeline. Fragment pipeline state changes
control the back end, or rasterization stage, of the graphics
pipeline. This state includes the depth test enable (z-buffer
hidden surface removal) and the line stipple definition
(patterned lines such as dash or dot). Geometry pipeline
state changes control the front end of the graphics pipe-
line. This state includes transformation matrices, lighting
parameters, and front and back culling parameters. Frag-
ment pipeline state changes are generally less costly than
geometry pipeline state changes.

Our systems design focussed on several areas that resulted
in large application performance gains. We realized that
the performance of our state change implementation could
significantly affect application performance. We decided
that this was important enough to require a redesign of
the state change modules and not just tuning. Applying
these considerations led us to implement immediate and
deferred validation schemes and provide redundancy
checks at the beginning of each state change entry point.

Validation. We implemented different immediate and de-
ferred validation schemes* for different classes of state
changes. Geometry pipeline state changes are handled by
deferred validation because they tend to be more com-
plex, requiring massaging of the state. They are also more
interlocked because changing one piece of state requires
modifying another piece of state (for example, matrix
changes cause changes to the light state). For us, deferred
validation resulted in a simple design and increased per-
formance, reliability, and maintainability. For fragment
pipeline state changes, we chose immediate validation
because this state is relatively simple and noninterlocked.

Redundancy Checks. Redundancy checks are done for all
OpenGL API calls. Because our analysis showed that ap-
plications often call state changing routines with a redun-
dant state (for example, new value==current value), we

* Validation is the mechanism that verifies that the current specified state is legal, com-
putes derived information from the current state necessary for rendering (for example an
inverse matrix for lighting based on the current model matrix), and loads the hardware
with the new state.

18 May 1998 • The Hewlett-Packard JournalArticle 2 •  1998 Hewlett Packard Company

wanted a design in which this case performs well. There-
fore, our design includes redundancy checks at the begin-
ning of each state change entry point, which allows a quick
return without exercising the unnecessary validation code.

Results. For state-change intensive applications, these
design decisions put us in a leadership position for
OpenGL application performance, and we achieved
greater than a 2× performance gain over our previous
graphics libraries. Smaller application performance gains
were achieved throughout our OpenGL implementation
with the state-change design.

Conclusion

ISVs and customers indicate that we have met our appli-
cation leadership price and performance goals that we set
at the start of the program. We have also exceeded the
performance metrics we committed to at the beginning of
the project. For more information regarding our perfor-
mance results, visit the web site:

 http://www.spec.org/gpc/opc

For long-term sustainability of our price and performance
leadership, we have continued working closely with our
ISVs to tune our implementation in areas that improve
application performance. In addition, new CPUs are

planned that will allow our implementation to run faster
without any effort on our part, and cost reductions are
continuing in graphics hardware.

The goal to develop an implementation that can support a
wide range of CPU or graphics devices has already been
demonstrated. We support three graphics devices that
have different performance levels (all based on the same
hardware architecture) and a pure software implementa-
tion that supports simple frame buffer devices on UNIX
and Windows NT systems.

Bibliography

1. M. Woo, J. Neider, and T. Davis, OpenGL Programming

Guide, second edition, Addison Wesley, 1997.

2. OpenGL Reference Manual, second edition, OpenGL Architec-
ture Review Board, 1997.

HP-UX Release 10.20 and later and HP-UX 11.00 and later (in both 32- and 64-bit configura-
tions) on all HP 9000 computers are Open Group UNIX 95 branded products.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

Windows is a U.S. registered trademark of Microsoft Corporation.

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United
States and other countries.

	���� ��
�������

This author’s biography appears on page 6.

������� �� ������

A graduate of the Univer-

sity of Connecticut in

1983 with a BSEE degree,

Michael Phelps is now involved in current

product engineering for the VISUALIZE fx

family of graphics subsystems. He came to HP

in 1994. He was born in Glen Cove, New York.

He is married and enjoys hunting, fishing, and

competitive shooting sports.

������� ��

�����!����������

Courtney Goeltzen-

leuchter is a software

engineer at the HP Per-

formance Desktop Computer Operation. With

HP since 1995, he currently is responsible for

design and development of graphics drivers

and hardware and software interfaces for the

HP 3D graphics accelerators. He graduated

from the University of California at Berkeley

in 1987 with a BA degree in computer science.

Born in Tucson, Arizona, Courtney is

married and has one child. He enjoys hiking,

reading science fiction, and playing with his

computer.

����� �� �������

Donley Hoffman is a soft-

ware engineer at the

Workstation Systems

Division and is responsible for maintenance

and support for current and future OpenGL

products. He graduated from New Mexico

State University in 1974 with a BS degree in

computer science. He came to HP in 1985.

Born in Alamogardo, New Mexico, Don is

married and has three children. His outside

interests include skiing, tennis, playing the

oboe and piano, running, reading, hiking,

and snorkling.

����� �� ����

This author’s biography appears on page 41.

� Go to Next Article
� Go to Journal Home Page

http://www.spec.org/gpc/opc
http://www.hp.com/hpj/98may/ma98a1.htm
http://www.hp.com/hpj/98may/ma98a7.htm
http://www.hp.com/hpj/98may/ma98a3.htm
http://www.hp.com/hpj/journal.html

