
May 1998 • The Hewlett-Packard Journal98Article 13 • 1998 Hewlett Packard Company

A Compiler for HP VEE

With the addition of a compiler, HP VEE programs can now benefit from

improved execution speed and still provide the advantages of an interactive

interpreter.

This article presents the major algorithmic aspects of a compiler for the

Hewlett-Packard Visual Engineering Environment (HP VEE). HP VEE is a

powerful visual programming language that simplifies the development of

engineering test-and-measurement software. In the HP VEE development

environment, engineers design programs by linking visual objects (also called

devices) into block diagrams. Features provided in HP VEE include:

� Support for engineering math and graphics

� Instrument control

� Concurrency

� Data management

� GUI support

� Test sequencing

� Interactive development and debugging environment.

Beginning with release 4.0, HP VEE uses a compiler to improve the execution

speed of programs. The compiler translates an HP VEE program into byte-

code that is executed by an efficient interpreter embedded in HP VEE. By

analyzing the control structures and data type use of an HP VEE program, the

compiler determines the evaluation order of devices, eliminates unnecessary

run-time decisions, and uses appropriate data structures.

The HP VEE 4.0 compiler increases the performance of computation-intensive

programs by about 40 times over previous versions of HP VEE. In applications

where execution speed is constrained by instruments, file input and output, or

display update, performance typically increases by 150 to 400 percent.

������ �������

����	�� ��������

������ �������

A member of the technical

staff at HP Laboratories

since 1989, Steve Green-

baum is currently researching “hardware-in-

the-loop” systems and programming for distrib-

uted systems. He has a PhD degree in computer

science (1986) from the University of Illinois at

Urbana-Champaign and a BS degree in com-

puter science (1980) from Syracuse University.

Steve was born in New York City, is married,

and has two children. In his leisure time he

enjoys playing guitar and taking field trips with

his family.

����	�� ��������

Stanley Jefferson is a mem-

ber of the technical staff at

HP Laboratories, where he

began his career at HP in 1990. He is currently

doing research in the area of “hardware-in-the-

loop” systems. He has a PhD degree in com-

puter science (1988) from the University of

Illinois at Urbana-Champaign. He received BS

(1977) and MA (1979) degrees in mathematics

from the University of California at Davis. Stan

was born in Oakland, California, is married,

and has two children. He enjoys playing piano

and day trips to the beach with his family.

May 1998 • The Hewlett-Packard Journal99Article 13 • 1998 Hewlett Packard Company

The compiler described in this article is a prototype devel-
oped by HP Laboratories to compile HP VEE 3.2 programs.
The compiler in HP VEE 4.0 differs in some details.The
HP VEE prototype compiler consists of five components:

� Graph Transformation. Transformations are performed
on a graph representation of the HP VEE program. The
transformations facilitate future compilation phases.

� Device Scheduling. An execution ordering of devices
is obtained. The ordering may have hierarchical ele-
ments, such as iterators, that are recursively ordered.
The ordering preserves the data flow and control flow
relationships among devices in the HP VEE program.
Scheduling does not, however, represent the run-time
flow branching behavior of special devices such as
If/Then/Else.

� Guard Assignment. The structure produced by schedul-
ing is extended with constructs that represent run-time
flow branching. Each device is annotated with boolean
guards that represent conditions that must be satisfied
at run time for the device to run. Adjacent devices with
similar guards are grouped together to decrease redun-
dancy of run-time guard processing. Guards can result
from explicit HP VEE branching constructs such as
If/Then/Else, or they can result from implicit properties
of other devices, such as guards that indicate whether
an iterator has run at least once.

� Type Annotation. Devices are annotated with type infor-
mation that gives a conservative analysis of what types
of data are input to, and output from, a device. The an-
notations can be used to generate type-specific code.

� Code Generation. The data structures maintained by the
compiler are traversed to generate target code. The

prototype compiler can generate C code and byte-code.
However, code generation is relatively straightforward
to implement for most target languages.

To simplify the presentation, many aspects of the HP VEE
language and compiler are omitted or given cursory treat-
ment. Notable in this regard is our cursory treatment of
concurrency mechanisms (both the prototype compiler
and the HP VEE 4.0 compiler handle concurrency). Only
a brief, somewhat formal description of the HP VEE lan-
guage is presented. Less formal descriptions of HP VEE
are given in the HP VEE manuals.1,2

Semantic Overview

HP VEE programs are constructed by connecting devices
together to form block diagrams. A simple HP VEE pro-
gram is displayed in Figure 1. HP VEE has an extensive
collection of built-in devices. Iterator, junction, and condi-
tional devices affect program control flow. Other devices
manipulate data or perform side-effects (some devices do
both). Another set of devices are available for applied
mathematics, controlling instruments, displaying engi-
neering graphs, building user interfaces, data manage-
ment, and performing I/O.

Pins and Devices

Devices may have any number of input and output pins,
depending on the device’s function. Connections can be
made from output pins to input pins to route data or con-
trol signals between devices. Several connection lines can
emanate from a single output pin, but at most one connec-
tion line can be attached to an input pin. A pin is consid-
ered to be connected if there is a connection between it
and another pin. Unconnected pins are not necessarily an

Figure 1

A simple HP VEE program to compute the area of a circle.

May 1998 • The Hewlett-Packard Journal100Article 13 • 1998 Hewlett Packard Company

error condition, but they serve no useful purpose. It will
simplify discussions to assume that they are not present.
Thus, the statement “data is placed on all output pins”
implicitly excludes all unconnected output pins.

When a device executes, it performs a computation based
on the values present on its input pins (if any) and pro-
duces results that are placed on appropriate output pins
(if any). The value placed on an output pin is also propa-
gated to any input pins that are connected to it. The com-
bination of placing a value on an output pin and propagat-
ing the value is called “firing the output pin.” Only one
value can be present on a pin, so previous values are over-
written by new values. Unlike traditional data-flow models
where input values are consumed, in HP VEE values on
data input pins remain available for further use after they
are used as input by an executing device.

There are five kinds of pins that may be attached to a
device:

� Data pins provide the input/output interface to a de-
vice. The data input pins attach to the left edge of a
device and the data output pins attach to the right edge
of a device. Most devices will not operate until data is
present at all data input pins. After a device operates,
data is placed on the output data pins.

� Sequence pins are an option that allow greater control
over the order in which devices operate. Most devices
have sequence input and sequence output pins. The
sequence input pin is attached to the middle of the top
edge of a device and the sequence output pin is attached
to the middle of the bottom edge of a device. All of the
devices in Figure 1 have unconnected sequence pins.
Either sequence pin may be left unconnected. If the se-
quence input of a device is connected, then the device
will not operate until the data input pins and sequence
input pin have data. Sequence output pins are explained
later.

� Execute pins are special input pins that force the device
to operate and place results on its output pins. Execute
pins are usually referred to as XEQ pins. XEQ pins operate
regardless of the presence of other inputs.

� Control pins are special inputs that affect the internal
state of a device, but have no effect on the propagation
of data values through the device. Common control pins
are Clear and Reset. Control pins operate regardless of
the presence of other inputs.

� Error pins are optional output pins. The presence of an
error pin causes any errors generated by the attached
device to be trapped. The appropriate error code is
output on the error pin.

A device can also have individual properties that are spe-
cified at development time. For example, the buffer size
and grid type can be specified for a strip chart display
device.

Data Types

The data types in HP VEE are integer, real, complex, polar
complex, waveform, spectrum, coordinate, enum, text, and
record. Multidimensional arrays can be built from these
data types. Generally, the input and output pins on a
device are not typed, and connections are never typed.
Rather, the data objects themselves are typed. Most of the
devices in HP VEE will accept any type of data, and they
automatically perform any necessary type conversions.
For example, the addition device will accept any combi-
nation of integer, real, complex, or array arguments.
Appropriate types are output based on the input types.
Some devices require particular data types as input and
will either perform a conversion or signal an error when
presented with a data object not meeting the type require-
ment. Most devices allow a user-specified type conversion
to be associated with each input pin. In addition, most
devices allow the user to require that the data be a
certain shape (scalar, array, one-dimensional array, two-
dimensional array, etc.). There is a nil value that is a value
of every type and means “no information.” The absence of
a value at a pin is different from the presence of a nil value.

Terminology

A connection is a set (unordered) consisting of an input
pin and an output pin. Devices x and y are connected if
there is a connection c such that one of the pins in c is
attached to device x and the other pin in c is attached to
device y. Unless otherwise specified, connections be-
tween devices are undirected. Hence, a connection be-
tween devices x and y is also a connection between de-
vices y and x. If x1,...,xn is a sequence of devices and
c1,...,cn�1 is a sequence of connections such that ci is a
connection between xi and xi�1 for i�1,...,n�1, we say
that c1,...,cn�1 is an (undirected) path from x1 to xn. For
example, in Figure 1 there is a path from the Radius de-
vice to the Real device. A diagram is pathwise connected

if there is at least one path between every pair of devices

May 1998 • The Hewlett-Packard Journal101Article 13 • 1998 Hewlett Packard Company

in the diagram. A device x is a direct ancestor of a device
y if there is a connection from an output pin of x to an
input pin of y. In this case, we also say that y is a direct

descendant of x. A device u is an ancestor of a device v if
there is a sequence of devices w1,...,wn with u�w1 and
v�wn such that wi is a direct ancestor of wi�1 for
i�1,...,n�1. Also, if ci is a connection from an output pin
of wi to an input pin of wi�1, then the sequence c1,...,cn�1

is called a directed path from u to v. If u is an ancestor of
v, we may also say v is a descendant of u. A cycle or feed-

back loop is a directed path from a device to itself. A pin p
occurs in a cycle c1,...,cm if p is a member of some ci. The
descendants of a device u are all the devices v for which
a directed path exists from u to v. In a diagram with a
cycle, it is possible for a device to be a member of its
descendants.

Data Flow

An HP VEE program is run by executing the devices in the
program. The order in which the devices execute is con-
strained by the connections between the devices and
some built-in priority rules. We say that a device’s data

dependencies are satisfied if all of its connected data
input pins and its sequence input pin (if connected) have
data present. The basic rule governing the execution
order of devices is that a device can execute only when
its data dependencies are satisfied. We call this the data

dependency rule.

A device that is neither an iterator, junction, nor asynchro-
nous* device is called a primitive device. The execution
order of primitive devices in a connected diagram where
the only connections are between data output pins and
data input or sequence input pins is governed by the data
dependency rule. A diagram of this form is run by allowing
each device to execute at most once, subject to the order-
ing constraint imposed by the data dependency rule. One
way to run such a diagram is to repeatedly choose an un-
executed device whose data dependencies are satisfied
and execute it until there are no devices left to choose.
Each time a device executes, the values propagated from
its outputs may satisfy the data dependencies of descen-
dant devices, thus making additional devices available for
execution. The process of running a diagram (or subdia-
gram) D is referred to as a sweep over D. The program in
Figure 1 can execute its devices in the order Radius, Real,

* Asynchronous devices, such as Delay and Confirm, are not treated in this paper.

Figure 2

A diagram with two independent threads.

Formula, Alphanumeric or in the order Real, Radius, Formula,
Alphanumeric.

A maximal pathwise connected subdiagram of a diagram
D is called an independent thread of D (connections to
control pins are ignored when determining independent
threads in HP VEE). For example, the diagram in Figure 2

has two independent threads. Suppose that D is an HP
VEE program consisting of n independent threads. Then a
sweep over D initiates a subsweep over each of the n in-
dependent threads. Each subsweep executes indepen-
dently of the others and the n subsweeps all run concur-
rently (or in a time-sliced manner). The sweep over D is
completed when all n subsweeps are completed.

Later, we will present control constructs that initiate sub-
sweeps over subdiagrams. In general, it is possible to have
arbitrarily nested subsweeps during the execution of a
program. Let s1,...,sn be a sequence of sweeps such that
si�1 is a subsweep of si for i�1,...,n�1. Then, the se-
quence s1,...,sn is called a nested sequence of sweeps, and
we say that si is a supersweep of sj whenever i�j. If
s1,...,sn is a nested sequence of sweeps and we are cur-
rently executing the sweep sn, then s1,...,sn are said to be
active, but only sn is said to be executing.

The following execution nesting rule is a generalization
of the rule that devices execute at most once per sweep.
Let s1,...,sn be a nested sequence of sweeps and d be any
device except a junction device. If d is directly executed
by the innermost subsweep sn, then device d can not be
directly executed again by any of the si, for i�n, but it
may be directly executed again by a newly created sub-
sweep of an si for i�n.

We glossed over a technical detail regarding device execu-
tion. Consider a device that has a data input pin, an XEQ

May 1998 • The Hewlett-Packard Journal102Article 13 • 1998 Hewlett Packard Company

pin, and a control pin. Each of these pins corresponds
to a different action. Which actions qualify as executing
the device? The detailed answer is given in the section
“Execute and Control Pin Splitting” on page 107. The
short answer in this particular case is that the device is
viewed as three devices where each device corresponds
to a different input pin, and each of the three devices can
execute subject to the execution nesting rule.

Sequence Pins

In some cases data dependencies in HP VEE are not capa-
ble of adequately specifying the order of execution of de-
vices. Sequence output pins provide an additional mecha-
nism for constraining the execution order. The intuitive
idea behind sequence output pins is that the sequence
output pin of a device d fires after d has executed and
only when no further execution is possible in the devices
descended from the data and error output pins of d. Infor-
mally, the sequence output pin on device d attempts to
capture the notion of completing the future computation
descended from d. In the example shown in Figure 3 the
sequence out pin of device A does not fire until A, B, and C
have executed. It follows that the devices can only exe-
cute in the order A, B, C, and D.

Because of cycles, descendants of a device d may include
devices that executed before d. Devices that executed
before d cannot reasonably be considered part of the fu-
ture computation descended from d. Therefore, if we are
in the midst of a sweep that has executed device d, we
define the future computation descended from d as the
descendants of the data and error output pins of d that
did not execute before d in any currently active sweep.

Figure 3

A sequence pin example. The only possible order of execution
is A, B, C, and D. Note that the lines do not connect where
they cross.

A couple of issues complicate the determination of when
to fire a sequence output pin. The following must be en-
sured before firing the sequence output pin of any exe-
cuted device d:

1. The execution of devices in the future computation
descended from d has proceeded as far as possible.

2. There are no executed devices in the future compu-
tation descended from d having unfired sequence
output pins.

Determining (1) is complicated by the possible presence
of devices in the future computation descended from d
that depend on data coming from devices not descended
from d. This is illustrated in Figure 4. A very coarse-
grained but simple way to ensure (1) is to reach the point,
after evaluating d, where the execution of devices in the
current sweep has proceeded as far as possible without
firing a sequence pin. Once this point is reached, a se-
quence output pin can be chosen so that (2) is ensured.
One way to ensure (2) is to choose the most recently
executed device with an unfired sequence output pin and
fire that device’s sequence output pin. It is possible to fire
sequence pins more aggressively and still ensure (1) and
(2), but it requires deeper analysis.

We now give a more detailed account of sequence pin fir-
ing in HP VEE 3.2. Consider a sweep (or subsweep) over a
diagram D that has run to the point where no device in D
is executing and no device in D is capable of executing
without firing a sequence output pin. Choose an executed

Figure 4

The future computation descended from A depends on
data from E. Devices A, E, B, and C must execute before
the sequence output pin on A fires.

May 1998 • The Hewlett-Packard Journal103Article 13 • 1998 Hewlett Packard Company

device d in D such that d is the most recently executed
device having an unfired sequence output pin (if there are
none then the sweep is finished). Propagate a nil value
from the sequence output pin of d, and continue the sweep
of D until no unexecuted devices with satisfied data de-
pendencies are available. Repeat this process of firing
sequence output pins until all sequence output pins on
executed devices in D have been fired. When further repe-
titions are not possible, the sweep over D is completed.

Note that sequence output pins in different subsweeps are
handled independently. Sequence output pins are fired as
part of the subsweep that executed their attached device,
and the order of their firing depends only on the devices
and sequence output pins in that subsweep.

If/Then/Else

The If/Then/Else device is used for branching the data flow,
and hence the execution flow. The programmer specifies
any number of named data input pins and a list of expres-
sions over those pins. Each expression corresponds to a
different data output pin. When the If/Then/Else device
executes, the expressions are evaluated in order until the
first expression that evaluates to a True (nonzero) value is
found. At this point, expression evaluation ceases, and the
value is output on the data output pin corresponding to the
true expression. If no expression evaluates to True, then
zero is output on the default Else data output pin. Note
that only one data output pin of the If/Then/Else device
outputs a value. Thus, the other data output pins will not
propagate a value, and hence none of their descendants
will be able to execute (because of the data dependency
rule).

Iterators

One consequence of the execution nesting rule is that
feedback loops in HP VEE can never result in iteration.
Instead, HP VEE has iterator devices that explicitly per-
form iteration. These iterator devices repeatedly run the
subdiagram descended from their output pin. It should be
noted that iterator devices do not impose any hierarchical
structure on the displayed HP VEE program, but are sim-
ply displayed as an ordinary device. The ForCount iterator
is shown in Figure 5. The ForCount device outputs the
sequence 0, 1, 2,...,n�1, where n is an iteration count that
can be input at runtime or set at development time. When
the ForCount is run during a sweep, it outputs a zero
(assuming the iteration count is greater than zero) and
starts a subsweep on the diagram descended from its
output pin. When the subsweep is finished, the ForCount
determines whether it has output its last value. If not, the
ForCount outputs its next value and performs another sub-
sweep. This process of performing subsweeps continues
until the final value of the ForCount is output, at which time
the ForCount ends its execution. Note that the ForCount is
in an outer sweep relative to the subsweeps on its descen-
dants, and that it is executed only once during the sweep
that initiated its execution (one can think of the ForCount
as being in a paused state when its subsweeps run).

The following active data rule applies to devices such as
iterators, junctions, and UserObjects that can create a new
subsweep. Let d be a device that creates a new subsweep.
Immediately before each subsweep created by d, all data
created in the previous subsweep (if there was one) per-
formed by d is inactivated (that is, made unusable). This

Figure 5

An example using ForCount. The result of running the program is shown. The Formula and Logging AlphaNumeric devices
have been iterated five times.

May 1998 • The Hewlett-Packard Journal104Article 13 • 1998 Hewlett Packard Company

Figure 6

This example, shown after execution, illustrates that data created outside the ForCount’s subsweeps, by the Real constant device,
remains active.

includes data created in subsweeps that are nested inside
the subsweep performed by d. To lend a more intuitive
feel to feedback loops, certain values occurring in feed-
back loops are exempted from inactivation. Specifically, if
an input pin occurs in a cycle and the data value on that
pin was not used in the sweep it was generated in, then
the data value on that pin is not inactivated (since the
intent of the feedback loop was to use this value on the
next iteration).

Without the active data rule, the data dependencies of
devices could be trivially satisfied on subsequent sub-
sweeps. The active data rule is illustrated in Figure 6 and
Figure 7.

Besides ForCount, there are other iterator devices that
work similarly because they output values and repeatedly
perform subsweeps on their descendant subdiagrams un-
til a termination condition is reached. Iterator devices can

occur as descendants of iterator devices to any depth. This
will result in nested subsweeps. If two iterator devices are
in the same sweep, we will assume that the subdiagrams
descended from any of the output pins (including se-
quence and error outputs) of one device do not intersect
with the subdiagrams descended from any of the output
pins of the other device.* All iterator devices in the same
innermost sweep execute as a group, concurrently or in a
time-sliced manner, so that no iterator is starved by an-
other iterator performing a large (or unbounded) number
of iterations.

Junctions

The junction device allows data from two or more data
input pins to be merged into a single data output pin. This
is useful for merging the branches of an If/Then/Else back

* In VEE 3.2 intersection was allowed, but the meaning was not well-defined. In VEE 4.0
iterator intersection is signaled as an error.

Figure 7

This example, shown after execution, illustrates that the data placed on the AlphaNumeric’s data input pin on the next-to-last
iteration was inactivated at the start of the last iteration. Otherwise, the AlphaNumeric would have displayed the data. Note that
the last value output by the ForCount is 9.

May 1998 • The Hewlett-Packard Journal105Article 13 • 1998 Hewlett Packard Company

Figure 8

An example of a junction merging the branches of an If/Then/Else. When run, this program displays the absolute value of its input.
In this case, the AlphaNumeric would display 4 when the program is run.

together, for initializing feedback loops, or for iterating
the inputs of the junction. See Figure 8 and Figure 9 for
examples. In the If/Then/Else merge and feedback initial-
ization cases, at most one of the junction device’s data
input pins will receive a value during a sweep. Thus, the
junction device does not have to satisfy the data depen-
dency rule to execute. The junction device can execute
whenever one or more data input pins has a value. If a
junction, j, initiates a sweep s of its descendants, then
neither s nor any subsweep nested inside s may execute j.
This restriction prevents iteration resulting from feedback.
Unlike other devices, the junction device consumes its
data input values when it executes. When the junction
device executes, it repeatedly sweeps over the descen-
dants of its data output pin just like an iterator, using the

Figure 9

This example, shown after execution, illustrates a junction
being used to initialize a feedback loop.

data input values as data output values. Thus, subsweeps
performed by a junction are subject to the active data
rule. Although a junction performs subsweeps in the same
manner as an iterator, it is not an iterator. The prototype
compiler assumes that junctions that are in the same
sweep execute in an arbitrary serial order rather than
concurrently, and the descendants of different junctions
in the same sweep are allowed to intersect.

User Objects

Subprograms can be written in HP VEE using the User-
Object device. The UserObject provides a subwindow in
which a block diagram can be constructed. A UserObject is
shown in Figure 10. The data input pins of a UserObject
have corresponding terminals inside the UserObject’s sub-
window. The diagram contained in the UserObject can con-
nect to these terminals in order to obtain the data on the
UserObject’s data input pins. The data output pins of a
UserObject are handled similarly. UserObjects operate under
the same rules as any primitive device. All data inputs
must be present before the UserObject executes. When the
UserObject executes, its diagram is executed as if it were
a top-level diagram. The sweep over the UserObject’s
diagram runs further subsweeps over the independent
threads of the diagram. When the sweep of the User-
Object’s diagram is finished, the last values placed on the
terminals of the UserObject’s data output pins are trans-
ferred to their corresponding data output pins, and the
UserObject completes its execution. UserObjects may also
have error and sequence pin connections.

May 1998 • The Hewlett-Packard Journal106Article 13 • 1998 Hewlett Packard Company

Figure 10

A UserObject that determines the sign of its input.

Phases of a Sweep

During a sweep s over a diagram D, a priority ordering
affects the order of device executions and sequence out-
put pin firings in D. If a subsweep of s is initiated, then its
priority ordering will begin fresh and will be independent
of the ordering in sweep s. The following summarizes the
priority classes of a sweep from high to low priority.

1. If there are primitive devices whose data dependen-
cies are satisfied, then one is chosen and executed.
This process is continued until there are no primitive
devices whose dependencies are satisfied. Note that
additional primitive devices may have their data de-
pendencies satisfied as data is propagated from the
output pins of executed devices, and thus they will
become eligible for execution during this priority
phase.

2. All junction devices that have data present on at least
one input pin are executed. The junctions are executed
in an arbitrary serial order, and each one initiates a
new subsweep.

3. All iterator devices that have their data dependencies
satisfied are executed. The iterator devices are exe-
cuted concurrently and each one initiates a new sub-
sweep.

4. If a sequence output pin is eligible to fire, it is fired as
described earlier, and then the current sweep contin-
ues at step 1. If there are no sequence output pins
eligible to fire, the current sweep is over.

Example

Consider the execution of the program in Figure 9. The
zero constant device executes first as it is the only primi-
tive device with its data dependencies satisfied. Then the
junction device executes, outputting the data that is on its
upper data input pin. At this point there are no primitives
or junctions that can execute, so we execute the ForCount.
The ForCount outputs a zero and starts a subsweep over its
descendants. The subsweep begins with the highest prior-
ity devices. The addition device is a primitive device and
now has its data dependencies satisfied, so it executes.
The data output by the addition device satisfies the data
dependencies of the display device and the junction.
Since the display device is primitive it has priority over
the junction, so it executes, displaying a zero. There are
now no primitive devices left in the subsweep that can
execute, so the junction executes. The junction outputs
the data that is on its bottom input pin and starts a sub-
sweep. The junction’s subsweep immediately terminates
since all of the descendants of the junction are prohibited
from executing because of the execution nesting rule. No
more devices can execute in the subsweep started by the
ForCount since all of the devices descended from the For-
Count have executed once in this current subsweep. Thus,
the current subsweep ends and the ForCount readies for
another iteration. Before performing the next iteration,
the active data rule is applied, inactivating all of the data
created on the previous sweep except the data that was
output by the junction, since it is exempt because of

May 1998 • The Hewlett-Packard Journal107Article 13 • 1998 Hewlett Packard Company

feedback. The ForCount outputs a one and performs
another sweep. The descendants of the ForCount are all
eligible to run since we have backed out of the subsweep
in which they were previously run. Thus, this second sub-
sweep proceeds in the same manner as the previous sub-
sweep. Iterations continue in this way until the ForCount
has performed five iterations, at which point the top-level
sweep is terminated. Note that feedback is simply a mech-
anism for using values generated in previous sweeps.

Architecture of the Compiler

Block Diagram Representation

The internal representation of an HP VEE program is a
directed graph constructed of objects that represent de-
vices, with edges between these objects corresponding to
the connections visible in the pictorial view. Information
about the pictorial presentation is maintained within the
internal device graph, but the compiler is only concerned
with the connection structure of an HP VEE program.

Transformations

Before the main compilation analysis takes place, the
compiler may modify the internal device graph to simplify
analysis. These modifications replace constructs having
special behaviors by collections of simpler constructs that
all have standard behaviors. Such graph modifications
only affect the internal representation, and are invisible to
the user.

Execute and Control Pin Splitting. For purposes of com-
pilation it is convenient to assume that all nonjunction HP
VEE devices fire only after all their inputs receive data.
However, some HP VEE devices may activate when only a
subset of their inputs have data, typically because such
devices have some execute or control pins (described in
the section “Pins and Devices” on page 99). To avoid hav-
ing to consider the types of input pins when performing
later stages of compilation, devices with such pins are
split into multiple “synthetic” devices such that each syn-
thetic device fires after all its inputs receive data. Synthetic
devices are device types that only exist when created by
the compiler. They are not part of the user-level HP VEE
devices and they never appear on the display.

For example, consider a Sample&Hold device. A Sample&
Hold has a data input pin and an execute pin. Data entering
on the data pin is copied to a buffer in the Sample&Hold

device, but the data is not propagated to the output pin
until the execute pin is fired (that is, receives data).
Figure 11 shows how a Sample&Hold device is split into
two synthetic devices: SH-Set and SH-Xeq.

The semantic role of SH-Set is to store the data from the
data input of Sample&Hold into the buffer associated with
Sample&Hold, and SH-Xeq’s job is to put the data in the
buffer onto the output pin. Links are made between these
devices so the compiler can find either one from the other.
The semantic behavior of this collection of synthetic de-
vices, as so connected, is equivalent to the original single
device in its context. The HP VEE user interface has the
single Sample&Hold device instead of the two separate
devices because the tight functional coupling of the two
behaviors makes it easier to conceptualize the composite
functionality as the action of a single device, making HP

Figure 11

Expansion of execute pins.

Is Converted to

and

May 1998 • The Hewlett-Packard Journal108Article 13 • 1998 Hewlett Packard Company

VEE easier to use. The compiler does the conversion to
simplify compilation.

Like execute pins, control pins also lead to device split-
ting, but they have a simpler reconnection scheme. Con-
trol pins affect the state of a device, but they are not di-
rectly involved in determining when a device can fire.
They only cause side effects within the device. If a device
has N control pins, it is split into N�1 synthetic devices
such that one synthetic device is similar to the original
device but with the control pins removed. Each of the
other N synthetic devices is associated with one control
pin by having the synthetic device’s single “normal” data
input get the input that had gone to the associated control
pin. See Figure 12 for an example (lines attached to con-
trol inputs are drawn with dashed lines in HP VEE). These
synthetic control pin devices implement the side effect that
the associated control pin was meant to perform. Links are
made between the synthetic and original devices to facili-
tate generating code.

There is a subtlety about control pin semantics that is not
addressed merely by splitting. The semantics of control
pins dictate that the action they implement take place
more or less at the time the pin receives data. Thus if a
synthetic device implementing a control pin action has
received data, it should be scheduled to execute as soon
as possible, ahead of other devices that may also be ready
to run. To implement this behavior, control pin devices
are tagged as high-priority devices, which cause the
scheduler to schedule them for execution before normal-
priority devices. This is a general mechanism that can be
used for other devices that need to be run at high priority.

A device with both control and execute pins can be ex-
panded by combining expansion techniques in a straight-
forward way.

Synthesized Constructs. It is sometimes beneficial to
split devices that do not have execute or control pins.
This is useful for devices having complex semantics that
can be implemented with combinations of simpler de-
vices. This can be thought of as using the device level of
HP VEE to implement parts of the compiler. It can also be
viewed as macro expansion.

The compiler uses this idea to implement the OnCycle
device. An OnCycle is split into two synthetic devices and
one standard RepeatUntilBreak iterator. The idea is that
OnCycle is like a RepeatUntilBreak iterator except it only

Figure 12

Expansion of control pins.

Is Converted to

and

and

fires at certain time intervals. This is implemented by ini-
tializing a time variable in a synthetic initialization device,
then running a RepeatUntilBreak iterator whose output
goes into a synthetic device that waits until the proper
time, then that waiting device connects to what the On-
Cycle connected to (see Figure 13).

May 1998 • The Hewlett-Packard Journal109Article 13 • 1998 Hewlett Packard Company

Figure 13

Expansion of an OnCycle device.

Expands into

Scheduling

The scheduler is the part of the HP VEE compiler that de-
termines the order of execution of devices in an HP VEE
program. From the HP VEE device graph, it produces a
schedule, which is a tree representation of a fairly con-
ventional control-flow program (such as what might cor-
respond to a C program).

Although in general the scheduler determines the program
structure, it does not attempt to express the run-time
path-branching aspects of special HP VEE constructs. For
example, the scheduler treats the If/Then/Else device as a
normal primitive device, and therefore assumes all its
output pins will fire each time it is executed, although it
actually only fires a single pin. The scheduler does this
because If/Then/Else can be used in ways that do not di-
rectly map into a typical program structure. A later pass
of the compiler, called guarding, extends the schedule by
adding constructs that represent the flow branching
which was ignored by the scheduler. Guarding also takes
care of some other situations in which run-time decisions
must be made. Guarding is described on page 113.

The basic method used by the scheduler is to traverse
the device graph in proper execution order, producing a
structure that represents the order and program structure
discovered during the traversal. The traversal does not
evaluate the program, but only considers basic aspects of
the device types. For example, iterators are not traversed
multiple times, but the descendants that would be repeat-
edly executed at run time are determined.

When the scheduler encounters a device, the device is
categorized as being in one of four categories, depending
on its type. Other than this categorization, the type of the
device is ignored by the scheduler. The device categories
are: iterators, junctions, asynchronous devices (for exam-
ple, Delay and Confirm), and everything else. Devices in the
last category are referred to as primitive devices. Compila-
tion details for asynchronous devices are not included in
this paper. Although the HP VEE language does not have
pure data flow semantics, data flow is used as a basic
semantic building block. Simple data flow graphs can be
serialized using topological sort, often called topsort,
which is a well known, efficient algorithm.3 The scheduler
is based on topsort, but has significant modifications.

May 1998 • The Hewlett-Packard Journal110Article 13 • 1998 Hewlett Packard Company

Figure 14

Topsort.

Topsort (Graph) {
 Ready–Nodes <– nodes in Graph that have all their input pins fired
 if (Ready–Nodes is Empty)
 return Empty
 else
 Fire outputs of all nodes in Ready–Nodes
 return append(Ready–Nodes, Topsort(Graph – Ready–Nodes))
}

Note: A node with no inputs is ”ready.”

Topsort takes a directed graph as argument and returns a
list of nodes. Each node in the returned list satisfies the
criterion that its ancestors occur before it in the returned
list. All nodes from the graph that can satisfy this criterion
are included. Only nodes that are part of cycles in the
graph cannot be topologically sorted. If there is more than
one topological sort for a graph, any one is a valid result.
See Figure 14 for a sketch of the topsort algorithm. Here
an input is considered to be fired if the output it is directly
connected to has been fired. Nodes with no inputs are
considered to have all their input pins fired.

For a simple data flow graph, the ancestor/descendant
relationship is one of data dependency. The topsort of
such a graph lists devices in an order such that a device
appears in the list after all the devices that produce data
for it. Therefore, in these cases topsort can be used as a
device-ordering compilation mechanism, eliminating the
need for run-time calculation of what to evaluate next.

Priority Ordering. An HP VEE program that contains only
primitive devices and does not use sequence output pins
can be scheduled using topsort. However, adding other
classes of devices or sequence output pins complicates
matters. For this discussion we will consider an HP VEE
program to consist of primitive devices, junctions, and
iterators. UserObjects will be classified as standard primi-
tive devices. We will temporarily ignore sequence out
pins.

The section “Phases of a Sweep” (page 106) described
device classes and their prioritized execution order. The
scheduler reflects this class-based ordering by extending
topsort to keep separate lists of ready devices according
to device class, and scheduling items from each class at
the proper time.

The structure of the HP VEE program being compiled is
reflected in the resulting schedule by having a subsche-
dule computed as a result of the simulated execution of a
control (sweep-inducing) device, and storing that sub-
schedule as the body of the device. For example, the body
of an iterator is that part of the schedule that results from
firing the data output pin of the iterator. This results in a
hierarchical schedule consisting of a list of devices, with
some devices in the list having a subschedule stored as
their body. Subschedules are lists of devices, some of
which may have their own subschedules.

HP VEE maintains a list of all UserObjects, and their dia-
grams are compiled one by one at the top level. When
they are encountered as a device during scheduling, they
are treated like noncompound devices; their contents are
not recursively compiled.

The diagram and environment corresponding to the main
program or a UserObject subprogram is called a context.
Internally, a context is represented by a synthetic context
device whose substructure includes a list of independent
threads (described in the section “Data Flow,” on
page 101). Each independent thread is a directed graph.

When a context is run, the independent threads run inde-
pendently and concurrently. The scheduler represents this
parallel execution using a Fork abstract syntax constructor,
which is also used for parallel iterators and other concur-
rency. The Fork has a list of threads that run in parallel
with each other such that the construct represented by
Fork is considered executing while any of its threads are
executing. Figure 15 shows a listing of the scheduler
program as described so far.

May 1998 • The Hewlett-Packard Journal111Article 13 • 1998 Hewlett Packard Company

Schedule–Context (Context) {
 for each independent–thread in Independent–Threads (Context)
 // Initialize P, J, and I
 Devices–With–No–Inputs(Independent–thread, &P, &J, &I)
 body(independent–thread) <– Schedule(P, J, I)

 // The body of a Context is a Fork of its independent threads.
 body(Context) <– Make–Fork(Independent–Threads(Context))
}

Schedule (P, J, I) {
 if (P not Empty)
 d <– pop(P) // Removes first element from P
 Fire–Data–Out–Pins(d, &P, &J, &I) // May add to P, J, and I.
 return push(d, Schedule(P, J, I))
 else if (J not Empty)
 for each j in J
 Fire–Data–Out–Pins(j, &jP, &jJ, &jI)
 body (j) <– Schedule (jP, jJ, jI)
 return append(J, Schedule(Empty, Empty, I))
 else if (I not Empty)
 for each i in I
 Fire–Data–Out–Pins(i, &iP, &iJ, &iI)
 body(i) <– Schedule(iP, iJ, iI)
 return push(Make–Fork(I), Schedule(Empty, Empty, Empty))
 else
 return Empty
}

Fire–Data–Out–Pins (D, *P &J, *I) {
 For each data output pin, O utPin , of device D, call
 Fire–Pin(Outpin , &P, &J, &I). Return value is not specified.
}

Fire–Pin (OutPin, *P, *J, *I) {
 Fire output pin OutPin. For each input pin IP that
 OutPin is directly connected to, mark IP as ”fired”
 (i.e., as having active data). If IP is attached to device
 D, and firing IP causes D to have its data dependencies
 satisfied, then add D to (the de–reference of) one of P,
 J, or I, which are pointers to variables holding primitive
 devices, junctions, and iterators, respectively. Return
 value is not specified.
}

Make–Fork (Threads) {
 Takes a list of ”threads,” where each thread is a list, and
 returns an object representing a Fork construct where all the
 threads run concurrently with each other. If the list of
 threads is empty, the resulting Fork represents an operation
 that does nothing and returns immediately.
}

Note: &variable denotes the address of variable, as in C. Within a
formal parameter list, * variable indicates that variable is passed by
reference, analogous to C.

Figure 15

Basic scheduling.

May 1998 • The Hewlett-Packard Journal112Article 13 • 1998 Hewlett Packard Company

The lists P, J, and I in the scheduler of Figure 15 are lists
of devices with satisfied data dependencies that are wait-
ing to be scheduled. These lists hold primitive devices,
junctions, and iterators, respectively.

The routine Fire-Pin adds devices to these lists as the de-
vices become ready. When adding a device, Fire-Pin could
place the device at the beginning, end, or somewhere else
in a list. Placing devices at the beginning leads to a more
depth-first traversal, while placing devices at the end is
more breadth-first. The semantics of HP VEE do not con-
strain this aspect of the ordering. The scheduler uses the
depth-first option because that ordering can lead to im-
proved efficiency of guard evaluation at run time (see
“Guarding Phase Passes” on page 113).

Care must be used when Fire-Pin places junctions on their
ready list. Junctions are the only devices the scheduler
sees that have their data dependencies satisfied by any
subset of their input pins (other cases are removed as
described in “Tranformations” on page 107). Thus, when
any input pin of a junction is fired, it can be placed on its

ready list. However, if a junction pin fires while the junc-
tion is currently in the ready list, the junction should not
be placed on the list again. This is easy to accomplish by
maintaining an ignore marker in a junction that is set
when the junction is placed on the ready list and cleared
after a junction is scheduled. Depending on how junctions
are compiled, it may be necessary to record which pins
are fired, even when the junction has its ignore marker set.

Sequence Out Pins. HP VEE 3.2 takes a conservative ap-
proach by not firing sequence output pins until after exe-
cuting all devices that can execute without firing a se-
quence output pin directly in the current sweep (but they
can fire in subsweeps). Then a sequence output pin is
fired (see “Sequence Pins” on page 102 for more about
sequence output pins). A listing of the extended Schedule
routine to implement sequence output pins is shown in
Figure 16.

Figure 16

Implementation of sequence out pins.

Schedule (P, J, I, S) {
 if (P not Empty)
 d <– pop(P) // Removes first element from P.
 if (has–sequence–out–pin(d))
 S <– push(seq–out–pin(d), S) // Add to top of S.
 Fire–Data–Out–Pins(d, &P, &J, &I) // May add to P, J, and I.
 return push(d, Schedule(P, J, I, S))
 else if (J not Empty)
 for each j in J
 Fire–Data–Out–Pins(j, &jP, &jJ, &jI)
 body(j) <– Schedule(jP, jJ, jI, Empty)
 else if (I not Empty)
 for each i in I
 if (has–sequence–out–pin(i))
 S <– push(seq–out–pin(i), S) // Add to top of S.
 Fire–Data–Out–Pins(i, &iP, &iJ, &iI)
 body(i) <– Schedule(iP, iJ, iI, Empty)
 return push(Make–Fork(I) Schedule(Empty, Empty, Empty, S))
 else if (S not Empty)
 Fire–Pin(first(S), &P, &J, &I) // May add to P, J, and I.
 return Schedule(P, J, I, rest(S))
 else
 return Empty
}

Note: Call this, from Schedule–Context, as Schedule(P, J, I, Empty).

May 1998 • The Hewlett-Packard Journal113Article 13 • 1998 Hewlett Packard Company

Figure 17

Simple conditional.

Guarding

As discussed previously, the scheduler ignores the special
nature of If/Then/Else and some other constructs. Instead,
the guarding compilation phase handles these constructs.
The reasons for this division are reviewed here, and the
implementation of guarding is outlined.

At first glance it appears that the scheduler could treat
each output branch of an If/Then/Else as separate evalua-
tion paths and store the subschedules that start with each
branch as separate “bodies” in the scheduled If/Then/Else.
For example, the scheduled If/Then/Else in the HP VEE
program in Figure 17 could have a Then body containing
device A, and an Else branch containing device B. This
could then be compiled into code with a structure like:

if (Test) then A else B.

However, conditionals in HP VEE programs can be used
in very general configurations that make it difficult to
structure the resulting program into a typical If/Then/Else
conditional multibranch structure. Descendants of condi-
tionals can overlap in complex ways and can overlap with

bodies of junctions and iterators as well. For example, the
program in Figure 18 cannot be structured in a simple
nested fashion. The scheduler avoids such issues by treat-
ing If/Then/Else like a standard primitive device. Guarding
extends the schedule to reflect the run-time branch deci-
sions ignored by the scheduler, but uses a different com-
putational approach that is specialized for this task.

Guarding is in fact used as a general run-time control
mechanism, and some generated guards are not associ-
ated with HP VEE’s If/Then/Else conditionals at all. Some
of these will be described below. The various types of
conditions that may apply to a device are combined when
testing at run-time.

Guarding Phase Passes. The compiler’s guarding phase
is divided into two passes: guard assignment and guard
coalescing. Guard assignment annotates each device in
the schedule with a set of guards. This set captures the
conditions that must be satisfied at run time for the de-
vice to be evaluated. If a device D has assigned to it a
set of guards G, then code could be generated for D that
reflects this structure:

if G then D

Guard assignment annotates devices in the schedule, but
the schedule is not otherwise altered. The guard coalesc-
ing pass explicitly extends the schedule by inserting syn-
thetic guarded-body devices into the schedule, based on
the guard annotations made by the guard assignment
pass. A guarded-body device has a set of guards assigned
to its guards property and a subschedule assigned to its
body property. The guards apply to all elements of the

Figure 18

Overlapping conditionals.

May 1998 • The Hewlett-Packard Journal114Article 13 • 1998 Hewlett Packard Company

body. After coalescing, guarding is explicitly represented
in the schedule by the guarded-body devices and code
generation only generates run-time conditions where a
guarded-body occurs.

Although correct programs would result if coalescing
added a guarded-body to each guarded device individu-
ally, the reason for a separate coalescing pass is optimiza-
tion. Coalescing combines guard sets from adjacent
devices into a single guarded-body whose body is a multi-
element segment of the schedule. This avoids many re-
dundant run-time conditionals.

To illustrate the redundancy removed by guard coalesc-
ing, consider two adjacent devices D1 and D2, both
guarded by the same set of guards G. Without coalescing

if G then D1

if G then D2

is generated. With coalescing,

if G then (D1; D2)

is generated. More elaborate coalescing can be per-
formed. For example, if D1 is guarded by G, and D2 is
guarded by G�H, then

if G then (D1; if H then D2)

can result. This last example would be represented in the
schedule with nested guarded-body devices of the form:

Guarded-Body[G, (D1, Guarded-Body[H, (D2)])].

As mentioned previously, when possible the HP VEE pro-
gram graph is scheduled in a relatively depth-first order to
improve efficiency of run-time guard evaluation. The rea-
soning is that the set of guards for a device is usually a
superset of the guards of each of its parents, so schedul-
ing devices adjacent to their ancestors increases the likeli-
hood that adjacent devices have common guards. This
works well for coalescing.

Guard Assignment for If/Then/Else. Guard assignment for
If/Then/Else constructs operate on the list of devices pro-
duced by the scheduler. Recall that devices in the sched-
ule occur in an order such that when considering a partic-
ular device in the schedule, all devices that produce data
consumed by that device will occur earlier in the schedule
(except if there is feedback). So a dependency-order tra-
versal of the HP VEE program graph can be accomplished
by a simple walk down the schedule list. When we get
to a device, we know that its parents have already been
processed.

As described in the section “If/Then/Else” on page 103, an
If/Then/Else fires a single output pin. Guarding implements
the branching implied by this single-pin firing behavior by
associating a unique boolean variable, called a guard,
with each output pin of the If/Then/Else. Before the expres-
sions of an If/Then/Else are evaluated, the guards for all the
pins are set to False. When it is determined which pin
fires, only the guard associated with that pin is set to True.

Note that since an If/Then/Else can have any number of
conditions (and hence, output pins), a single boolean
variable for an If/Then/Else is not adequate. A single multi-
valued flag could be used instead, but then instead of
directly testing its value (True or False), a test would have
to use the value resulting from a comparison of the vari-
able with an appropriate value. We will assume here that
multiple boolean variables are used.

The basic idea of the guard assignment algorithm is to
traverse the schedule list visiting each device, in order,
and for each such device D, consider all the direct parents
of the device. The parent devices will already have been
processed because of the schedule ordering. The guards
from the guards set of each of D’s direct parents are
added to the guards set of D. Also, if a direct parent of D
is an If/Then/Else device, the guard associated with each
If/Then/Else output pin that is directly connected to D is
also added to the guards set of D. Figure 19 gives a more
detailed sketch of the algorithm.

Other Guarding Considerations. A number of important
points have been omitted in the presentation of the guard
assignment algorithm. First, it does not address the fact
that the schedule is not actually a flat list, but instead is a
hierarchical structure because schedule segments are
stored as the bodies of devices such as junctions and iter-
ators. One must consider the relationship between the
guards on a hierarchical device and the guarding of the
body of the device. Also, the interpretation of the guards
set must be clarified. These points are related.

First, consider the meaning of the guards sets. These are
sets of individual guard objects, where each guard repre-
sents a Boolean valued variable. For HP VEE programs
without junctions, a guards set can be interpreted as a
conjunction (logical AND) of the individual guards in the
set. This is because after the graph transformations per-
formed earlier in the compilation (see section “Trans-
formations,” page 107), all nonjunctions the compiler sees
must have data on all their input pins to run. The guards

May 1998 • The Hewlett-Packard Journal115Article 13 • 1998 Hewlett Packard Company

Figure 19

Basic guard assignment for If/Then/Else.

// These do not have specified return values.

Guard–Assignment (Schedule) { // Schedule is a list of devices.
 if (Schedule not Empty)
 Assign–Guards–to–Device(first(Schedule))
 Guard–Assignment(rest(Schedule))
}

Assign–Guards–to–Device (D) { // D is a device.
 for each input pin IP of D
 OP <– output–pin–connected–to(IP)
 Parent <– device–attached–to(OP)
 guards(D) <– guards(D) guards(Parent)
 if (Parent is an IF/Then/Else device)
 guards(D) <– guards(D) {guard(OP)}

inherited from parent devices represent the conditions
needed for each parent to run, and also for direct If/Then/
Else parents to place data on the appropriate lines. Thus,
having data on all input lines requires all the guards to be
true.

A problem arises when HP VEE programs contain junc-
tions. Junctions can run when any subset of their inputs
have data, so the guards on junctions must be disjunctive
(logical OR) instead of conjunctive. If we allow both con-
junctive and disjunctive guarding, the guard sets must be
replaced with potentially complex boolean expressions
(using conjunctions and disjunctions). We show how to
solve this problem below.

Guards assigned to an iterator device should not be prop-
agated into the iterator body. If the guards on the iterator
device are false, the iterator will be skipped, so the body
will be skipped as well. If the guards are true, the iterator

and its body will run. In general, the body implicitly inher-
its the effect of the guards on the iterator. This works for
junction bodies as well, so that the disjunctive guarding
implied by junction semantics does not need to produce
any explicit guards in the junction body. We can conclude
from what we have discussed so far that guards do not
need to propagate into the bodies of junctions or iterators,
and the guard set can indeed be considered to represent a
conjunction.

However, not propagating the guards of junctions and
iterators into their bodies can lead to a problem when data
created inside the body is used outside the body. We will
refer to such data as “escaping” from the junction or itera-
tor. Consider the configuration in Figure 20. Here device
B is in the iterator body, but device C is not. If the If/Then/
Else evaluates such that the condition connected to the
iterator is false, the iterator and its body (device B) will

Figure 20

Data “escaping” from an iterator body.

May 1998 • The Hewlett-Packard Journal116Article 13 • 1998 Hewlett Packard Company

Figure 21

Data escaping from an junction body.

be skipped because the iterator is guarded via the If/Then/
Else. If the iterator does not run, device C should not run
either, because it will not have input data. However, if the
body of the iterator does not explicitly have the iterator’s
guards, device C will not inherit any guards from its par-
ents. Here device C should be guarded by the guard that is
on the iterator device. Figure 21 shows a similar configu-
ration using a junction instead of an iterator. Here device B
does not need an explicit guard because it is in the body
of the junction, but device C needs a disjunctive guard.

Although this problem could be solved by having guards
of junctions and iterators propagate along paths of escap-
ing data, this is not the best solution. One problem would
be that disjunctive guards would still be needed. Another
problem is that such propagated guards are sometimes
redundant, and often more complicated than needed. A
better and more general solution is motivated by the ex-
ample in Figure 22. Here data escapes from the iterator,
but there are no explicit conditionals. The iterator iterates
the number of times specified by the formula feeding into
it.

For the type of situation illustrated in Figure 22, it can-
not, in general, be determined at compile time how many
times the iterator will iterate. If it iterates zero times, de-
vice B will be skipped because it is in the iterator body,
but device C should not run either. Thus, it needs to be
determined how device C should be guarded. There is no
conditional to generate a guard. To solve this problem, a
new type of guard was created, called a ran-once guard.
A ran-once guard is associated with the iterator, and is
initially set to False. In some cases it may need to be reset
to False in outer sweeps (discussed below). If the iterator
runs, the ran-once guard is set to True. Devices that use
data escaping from the iterator, such as device C in the

example, should be guarded by the iterator’s ran-once
guard.

So we see that ran-once guards are, in general, needed for
iterators. Devices receiving escaping data should inherit
not just the guards from the guards set of the iterator de-
vice, but also from the ran-once guard for the iterator,
conjoined together (that is, they all need to be true). The
key observation is that this conjunction has a value that is
identical to the ran-once guard alone. The ran-once guard
encapsulates the guards on the iterator because the ran-
once guard indicates whether or not the iterator runs, no
matter what the reason. It might not run because the iter-
ator count is zero, but it also might not run because of
guarding the iterator device. Both reasons are captured by
the ran-once guard. Thus, it is sufficient to guard devices
that use escaping data with just the ran-once guard.

Extending this idea to junctions, a ran-once guard for
junctions encapsulates the disjoin of the guards inherited
by the junction. Therefore, devices that use data that
escapes from a junction body can be guarded by the junc-
tion’s ran-once guard, and no explicit disjoined guards are
needed.

Figure 22

Device C should not run if the iterator iterates zero times.

May 1998 • The Hewlett-Packard Journal117Article 13 • 1998 Hewlett Packard Company

Figure 23

Conditionals flowing into and out of a conditional body.

It can now be seen that the complexity of guard sets is
kept relatively low by not propagating guards through
junctions and iterators to their bodies and by only propa-
gating ran-once guards for data that escapes a body.

It should be noted that guards created inside the body of a
junction or iterator can propagate outside the junction or
iterator via escaping data, and guards created outside the
body can propagate into the body if they do not enter
through the body’s junction or iterator device. For exam-
ple, in Figure 23, If/Then/Else1 and device A are both in
the body of the iterator, and If/Then/Else2 and device B are
outside. The guard from If/Then/Else2 propagates into the
iterator body to device A, and the guard from If/Then/Else1
propagates out of the body to device B (as does the guard
from If/Then/Else2). Devices A and B are both guarded by
If/Then/Else1 and If/Then/Else2.

At run time, If/Then/Else guards do not have to be initial-
ized before reaching their If/Then/Else device. This is be-
cause if the If/Then/Else is not reached, it will be because
the If/Then/Else or containing devices are suppressed by
other guards (possibly ran-once guards encapsulating
some of them), and these surrounding guards propagate
along with the If/Then/Else guards. So if the If/Then/Else is

suppressed by guards, these guards will also suppress
descendants of the If/Then/Else that would have used the
If/Then/Else guard (because the guards are conjoined).

Ran-once guards, however, must be initialized to False at
the start of sweeps that use them because if the junction
or iterator controlling a ran-once guard is suppressed by
other guards, those surrounding guards are not propa-
gated along with the ran-once guard. This initialization
maintains the active data rule semantics described in the
section “Iterators” (page 103), where data created in a
sweep is invalidated if the sweep restarts. If this initializa-
tion were not done, a ran-once guard could remain set to
True from an earlier sweep, allowing invalidated data to be
used. For example, in Figure 24, Iterator2 will run in the
first iteration of Iterator1 (when it outputs 1), but it will
not run in the second iteration of Iterator1 (when it out-
puts 2). If the ran-once guard for Iterator2 were not reset
at the start of the second iteration of Iterator1, it would
still be True from the first iteration, and device A would
evaluate in the second iteration of Iterator1, but it should
not. In general, a ran-once guard needs to be initialized in
the innermost sweep (junction or iterator) containing the
junction or iterator it is associated with, and in all sweeps
containing that sweep up to and including the sweep that
also contains all of the consumers of the ran-once guard
(which may be the top level).

An additional point concerning ran-once guards is that
when data escapes from nested iterators or junctions (or
both), only the ran-once guard of the deepest one needs
to be used. Consider the program in Figure 25. The struc-
ture of the schedule for this example is:

� Top-level schedule: Iterator1

� body(Iterator1): Iterator2

Figure 24

The ran-once guard at Iterator2 needs to be set to False at the start of each iteration of Iterator1, or device A would run too often.

May 1998 • The Hewlett-Packard Journal118Article 13 • 1998 Hewlett Packard Company

Figure 25

Data escaping from nested iterators.

� body(Iterator2): If/Then/Else1, Iterator3, B

� body(Iterator3): If/Then/Else2, Iterator4

� body(Iterator4): A

Since B uses data created in Iterator4, B needs to be
guarded by the ran-once guard for Iterator4. It does not,
however, need to also be guarded by the ran-once guard
of Iterator3, even though the data used by B is escaping
from both Iterator4 and Iterator3. The ran-once guard for
Iterator3 is not needed at all in this example. The ran-once
guard for Iterator4 must be initialized to False at the start
of each iteration of Iterator2 and Iterator3. It is set to True
at the start of the first iteration of Iterator4. It is not neces-
sary to set it at the start of each iteration of Iterator4, other
than the first iteration, since its value cannot change dur-
ing Iterator4’s execution. The ran-once guard does not
need to be initialized by Iterator1 or at the top level, be-
cause it is not used at those levels. Also, a guard from
If/Then/Else1 will guard Iterator3 and B, and a guard from
If/Then/Else2 will guard Iterator4.

An extended version of Assign-Guards-to-Device from
Figure 19 appears in Figure 26. This version imple-
ments the methods discussed above.

Guards are used for control of other constructs as well.
One example is error pins. An error output pin can be

placed on many HP VEE devices. If present, errors in the
device are trapped by the system and cause the error pin
to fire instead of the other output pins. If there is no error
the other pins fire and their error pin does not. From the
compiler’s point of view, any device with an error pin is
similar to a two-branch If/Then/Else, except that the noner-
ror branch can be associated with any number of output
pins. Thus, guards are used to implement error outputs in
a similar manner to the implementation of If/Then/Else.
The guards are set by run-time error trapping constructs
compiled with the implementation of the device with the
error pin.

Sometimes guards can be optimized away at compile time.
Ran-once guards are only needed for escaping data, so if
no data escapes they do not have to be set. If data does
escape, but it can be verified at compile time that the in-
nermost escaped sweep runs sufficiently often compared
to all the devices that consume the escaped data, the ran-
once guard can be omitted. For example, if an iterator is
known to run a fixed nonzero number of times, and there
are no guards acting on it (directly or indirectly), then it
does not need to have a ran-once guard for any escaping
data because it will verifiably run at least once. There are
many other situations where various types of guards can
be optimized away, although in practice it can be complex.

May 1998 • The Hewlett-Packard Journal119Article 13 • 1998 Hewlett Packard Company

Figure 26

Guard assignment.

Assign–Guards–to–Device (D) { // D is a device.
 if (D is a junction or iterator)
 // Assign guards to body before D itself so that body won’t
 // inherit guards from D.
 Guard–Assignment(body(D))
 for (each input pin IP of D)
 OP <– output–pin–connected–to(OP)
 Parent <– device–attached–to(OP)
 guards(D) <– guards(D) guards(Parent)
 if (Parent is an If/Then/Else device)
 guards(D) <– guards(D) {guards(OP)}
 if (Parent is in a junction or iterator body that D is not in)
 RanOnce–Guard <–
 ran–once–guard(deepest–junction–or–iterator–in(Parent))
 guards(D) <– guards(D) {RanOnce–Guard}
 record <Parent,D,RanOnce–Guard> for RanOnce initialization
}

Type Annotation

Type annotation is a phase of the prototype HP VEE com-
piler in which every pin of every device in an HP VEE
program is annotated with a description of the types of
data it will handle at run time. The type annotations can
often be used to generate more efficient run-time code.
Some run-time checks can be eliminated and composite
data objects can be replaced by hardware supported rep-
resentations (for example, real numbers). The type de-
scriptions are conservative approximations in that they
err on the safe side. For example, we may obtain a con-
servative approximation that some data input pin is al-
ways a real or integer scalar, when in fact it could only be
a real scalar.

Recall from the discussion of HP VEE data types that data
objects in HP VEE are typed, but pins and connections
are not typed. In HP VEE 3.2 the data objects have fields
that specify the type information. Also, recall that most
HP VEE devices will handle many different types of data
as input. Every time a device is executed by the HP VEE
3.2 interpreter, the following steps typically occur:

1. The type of each input value is ascertained and com-
pared against the pin’s required type. A conversion
may need to be performed, possibly allocating and
initializing a new data object.

2. A check is made to determine whether input values
need to be promoted to a common type. Again, input
values may need to be converted.

3. The data inputs, or their conversions, are used to
perform the computation.

4. The final result is injected into a data object, along
with type information.

When executing a simple numerical device, these sorts of
extraction, conversion, and injection operations on data
objects can account for a substantial percentage of the
device’s execution time. With type annotation, unneces-
sary extraction, conversion and injection operations can
often be eliminated. The result can be very efficient nu-
merical code that uses standard hardware-supported data
representations such as real and integer.

The type descriptions generated during type annotation
are sets of ordered pairs. Each pair specifies a class of
values and a class of shapes, as shown in Table I. A type
description represents a disjunction of pairs, as shown in
Table II. Type descriptions are normalized so that the
number of pairs is minimized. Normalizing a type descrip-
tion does not change its meaning, as shown in Table III.

May 1998 • The Hewlett-Packard Journal120Article 13 • 1998 Hewlett Packard Company

Table I
Type Descriptions

Pair Meaning

<real, scalar> Data is a real scalar

<real, array> Data is a real array of some dimension

<real, array-1d> Data is a real one-dimensional array

<real, any> Data is a real array or real scalar

<real, any> Data in anything

<any, array> Data is an array, but type is unknown

Table II
Disjunction of Pairs in Type Descriptions

Type Description Meaning

{<real, scalar>, <integer, scalar>} Data is a real or integer scalar

{<real, scalar>} Data is a real scalar

{<real, scalar>, <nil, any>} Data is a real scalar or nil

Table III
Normalization of Type Descriptions

Type Description Normalized Type Description

{<real, scalar>, <real, any>} {<real, any>}

{<real, scalar>, <real, array>} {<real, any>}

{<real, scalar>, <integer, any>} {<real, scalar>, <integer, any>}

The type descriptions are ordered by a�b if the set of
values described by a is a proper subset of the values de-
scribed by b. The bottom element of the ordering is {} and
the top element of the ordering is {<any, any>}.

Determining the type description for every pin of every
device in an HP VEE program can be viewed as executing
the HP VEE program over the abstract domain of type
descriptions rather than over the standard domain of val-
ues. In this view, devices take type descriptions as input
and compute appropriate type descriptions as outputs.
The resulting type descriptions are propagated to descen-
dants for further annotation. This notion of computing
with abstract values is sometimes called abstract inter-

pretation. An annotated program is shown in Figure 27.
In this figure, the addition device takes {<integer, scalar>}
and {<real, scalar>} and produces {<real, scalar>} as the

result. The reason for this is that the standard addition
device promotes its inputs to a common type before com-
puting the result, and the abstract addition device reflects
this.

Figure 27

Example of type annotation.

May 1998 • The Hewlett-Packard Journal121Article 13 • 1998 Hewlett Packard Company

Since truth values cannot be determined from type de-
scriptions, when performing type annotation we simply
ignore all guard and control values and propagate type
descriptions to all output pins.

Type annotation is performed by traversing the scheduler
output and determining type annotations for every device
that is encountered. Because of feedback loops, type an-
notations can change on input pins of devices that have
already been visited in the traversal. Thus, the type anno-
tator may need to traverse the scheduler output multiple
times until all type annotations have stabilized. The sub-
sequent traversals are very efficient because only devices
that need to have their output pin annotations updated
are redone. Type annotations do eventually stabilize,
because when a type description, d, is changed, it is re-
placed by a type description that is strictly greater than d
in the ordering. Since there are only a finite number of
type descriptions, only a finite number of changes are
possible.

Code Generation

The internal structure that results from the sequence of
graph transformations, scheduling, guarding, and type
annotation, is similar in form to an annotated parse tree
that might be produced by a conventional compiler. To
complete the compilation, target code is produced from
this structure. If appropriate libraries of HP VEE built-in
routines exist, most of the compiled internal structure can
be straightforwardly mapped to any conventional program-
ming language, such as C. The mapping may be difficult
for error trapping (for error pins) and the implementation
of the Fork construct. Fork should map to a construct (or
constructs) to implement thread creation and destruction.
Error trapping is built-in or can be implemented in most
programming systems, and threads have become reason-
ably common. If the generated code is interpreted, thread-
ing is easy to implement.

To generate code for different target languages, only the
code generator needs to be modified. This is a relatively
small part of the compiler. Prototype code generators for
C, and for an interpreted byte-code, have been imple-
mented. C generators have been written to produce stand-
alone programs for subsets of HP VEE and to produce C

code to be compiled and dynamically loaded into a run-
ning HP VEE 3.2 session. A byte-code generator was writ-
ten to produce a stream of byte code to a file or in-
memory array. A simple interpreter running inside HP
VEE can run the byte code. An advantage of the byte-code
generator over the C code generator is that an external
compiler is not needed. Another advantage of interpreta-
tion is that program development features such as single
stepping and tracing are easier to implement, especially in
the context of running programs inside the HP VEE devel-
opment system.

Conclusion

An overview of the major components of a compiler for
HP VEE 3.2 has been presented. Although many details
were omitted, the fundamental algorithms for a large
class of programs have been explained. The five compiler
components are graph transformation, device scheduling,
guard assignment, type annotation, and code generation.
These components combine to implement the control
semantics explicitly or implicitly specified in an HP VEE
program. These semantics were also described. A com-
piler based on the prototype compiler has now become an
integral part of HP VEE 4.0.

Acknowledgments

A compiler for HP VEE was originally suggested to us by
Randy Coverstone, our department manager at Hewlett-
Packard Laboratories. Wes Higaki and Bill Shreve also
provided valuable management support. Special mention
goes to the following Measurement Systems Division engi-
neers from the HP VEE product team: Jim Bachman, Ken
Colasuonno, John Dumais, and Susan Wolber. These four
had the difficult task of understanding our prototype and
making it into a product. The result of their efforts is the
compiler in HP VEE 4.0. Bill Hunt and Randy Bailey were
engineers on the Measurement Systems Division HP VEE
team who worked with us early in the project. Bill helped
us integrate early versions of the compiler with HP VEE,
and supplied much other help as well. John Bidwell, Bill
Heinzman, and Chuck Heller also provided encourage-
ment and support.

May 1998 • The Hewlett-Packard Journal122Article 13 • 1998 Hewlett Packard Company

References

1. R. Helsel, Cutting Your Test Development Time with HP

VEE: An Iconic Programming Language, P T R Prentice Hall,
Englewood Cliffs, NJ, 1994.

2. Hewlett-Packard Journal, Vol. 43, no. 5, October 1992,
pp. 72-88.

3. D. E. Knuth, The Art of Computer Programming, Vol. 1/Funda-
mental Algorithms, Addison-Wesley, 1973. W W W

 Online Information

More information about HP VEE can be found at:

http://www.hp.com/go/HPVEE

� Go to Journal Home Page

http://www.hp.com/go/HPVEE
http://www.hp.com/hpj/journal.html

