
89 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Strengthening Software Quality Assurance

Increasing time-to-market pressures in recent years have resulted in a

deterioration of the quality of software entering the system test phase. At

HP’s Kobe Instrument Division, the software quality assurance process was

reengineered to ensure that released software is as defect-free as possible.

The Hewlett-Packard Kobe Instrument Division (KID) develops

measurement instruments. Our main products are LCR meters and network,

spectrum, and impedance analyzers. Most of our software is built into these

instruments as firmware. Our usual development language is C. Figure 1

shows our typical development process.

Given adequate development time, we are able to include sufficient software

quality assurance activities (such as unit test, system test, and so on) to provide

high-quality software to the marketplace. However, several years ago, time-to-

market pressure began to increase and is now very strong. There is no longer

enough development time for our conventional process. In this article, we

describe our perceived problems, analyze the causes, describe countermeasures

that we have adopted, and present the results of our changes.

Figure 1

Design
Implement

(Coding) Test Ship

ERS/IRS
Unit
Test

Integration
Test

System
Test

Final Audit

R&D R&D, SWQA,
Marketing

R&D

R&D

ERS/IRS
SWQA

External/Internal Reference Specification
Software Quality Assurance
SWQA Checkpoint

Hewlett-Packard Kobe Instrument Division software development process
before improvement.

�����	
� �����

��� ���� ���

�����	
� �����

Mutsuhiko Asada is a

software quality assur-

ance engineer at HP’s

Kobe Instrument Division. He received a

Master’s degree in nuclear engineering from

Tohoku University in 1986 and joined HP the

same year. Born in Japan’s Miyagi prefec-

ture, he is married, has two children, and

enjoys mountain climbing and photography.

��� ���� ���

Bryan Pong is an R&D

engineer with HP’s Kobe

Instrument Division,

working mainly on firmware. He received

Master’s degrees in electronics and computer

engineering from Yokohama National Univer-

sity in 1996. He was born in Hong Kong and

likes travel and swimming.

90 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Existing Development Process

The software development process that we have had in
place since 1986 includes the following elements:

� Improvement in the design phase. We use structured
design methods such as modular decomposition, we use
defined coding conventions, and we perform design
reviews for each software module.

� Product series strategy. The concept of the product
series is shown in Figure 2. First, we develop a plat-
form product that consists of newly developed digital
hardware and software. We prudently design the plat-
form to facilitate efficient development of the next and
succeeding products. We then develop extension prod-
ucts that reuse the digital hardware and software of the
platform product. Increasing the reuse rate of the soft-
ware in this way contributes to high software quality.

� Monitoring the defect curve. The defect curve is a plot
of the cumulative number of defects versus testing time
(Figure 3). We monitor this curve from the beginning
of system test and make the decision to exit from
the system test phase when the curve shows sufficient
convergence.

As a result of the above activities, our products’ defect
density (the number of defects within one year after ship-
ment per thousand noncomment source statements) had
been decreasing. In one product, less than five defects
were discovered in customer use.

Perceived Problems

Strong time-to-market pressure, mainly from consumers
and competitors, has made our development period and
the interval between projects shorter. As a result, we
have recognized two significant problems in our products

Figure 2

New

Reuse

ModifyNew

New

Reuse

Modify

Platform Product Extension Product Extension Product

Product A Product A Product A

The product series concept increases the software reuse
rate, thereby increasing software quality.

Figure 3

0
Test Hours

250

300

350

200

150

100

50

0
100 200 300 400 500 600 700 800 900 1000 1100

N
um

be
r o

f D
ef

ec
ts

Project X (1993 Shipment)

Project B (1990 Shipment)

Typical defect curves.

and process: a deterioration of software quality and an
increase in maintenance and enhancement costs.

Deterioration of Software Quality. In recent years (1995
to 1997), software quality has apparently been deteriorat-
ing before the system test phase. In our analysis, this phe-
nomenon is caused by a decrease in the coverage of unit
and integration testing. In previous years, R&D engineers
independently executed unit and integration testing of the
functions that they implemented before the system test
phase. At present, those tests are not executed sufficient-
ly because of the shortness of the implementation phase
under high time-to-market pressure. Because of the
decrease in test coverage, many single-function defects
(defects within the range of a function, as opposed to
combination-function defects) remain in the software at
the start of system test (Figure 4). Also, our system test
periods are no longer as long. We nearly exhaust our test-
ing time to detect single-function defects in shallow soft-
ware areas, and we often don’t reach the combination-
function defects deep within the software. This makes
it less likely that we will get convergence of the defect
curve in the limited system test phase (Figure 5).

Increase of Maintenance and Enhancement Costs.

For our measurement instruments, we need to enhance
the functionality continuously to satisfy customers’ re-
quirements even after shipment. In recent products,
the enhancement and maintenance cost is increasing
(Figure 6). This cost consists of work for the addition of

91 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Figure 4

Combination-Function
Defects and Others

82.2%

Combination-
Function

Defects and
Others
52.0%

Single-
Function
Defects
48.0%

Product B (1990) Product D (1996)

Single-
Function
Defects
17.8%

Change in the proportion of single-function defects found
in the system test phase.

new functions, the testing of new modified functions, and
so on. In our analysis, this phenomenon occurs for the
following reasons. First, we often begin to implement
functions when the detailed specifications are still vague
and the relationships of functions are still not clear.
Second, specifications can change to satisfy customer
needs even in the implementation phase. Thus, we may
have to implement functions that are only slightly different
from already existing functions, thereby increasing the
number of functions and pushing the cost up. Figure 7

shows that the number of functions increases from one

Figure 5

Project D (1996 Shipment)

Project C
(1995 Shipment)

350

0

Test Hours

300

250

200

150

100

50

0
100 200 300 400 500 600

N
um

be
r o

f D
ef

ec
ts

Defect curves for post-1995 products.

Figure 6

160

140

120

100

80

60

40

20

0

Product B (1991)
Total: 24 Functions

Enhanced

Product C (1995)
Total: 13 Functions

Enhanced
61.3

132

Ti
m

e
(H

ou
rs

/F
un

ct
io

n)

Increase in the cost per function of enhancement and
maintenance. The first enhancements for Product B
occurred in 1991.

product to another even though the two products are
almost the same.

Often the internal software structure is not suitable for a
particular enhancement. This can result from vague func-
tion definition in the design phase, which can make the
software structure inconsistent and not strictly defined.
In the case of our combination network and spectrum
analyzers, we didn’t always examine all the relationships
among analyzer modes and the measurement and analyzer
functions (e.g., different display formats for network and
spectrum measurement modes).

Figure 7

Product B (1990)
Product C (1995)

320

395

500

400

300

200

100

0

N
um

be
r o

f C
om

m
an

ds

Increase in the number of commands in two similar
analyzers as a result of changing customer needs.

92 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Naturally, the enhancement process intensely disturbs soft-
ware internal structures, which forces us to go through
the same processes repeatedly and detect and fix many
additional side-effect defects.

Countermeasures1,2

If we had enough development time, our problems would
be solved. However, long development periods are no
longer possible in our competitive marketplace. Therefore,
we have improved the development process upstream to
handle these problems. We have set up two new check-
points in the development process schedule to make sure
that improvement is steady (Figure 8). In this section we
describe the improvements.

We plan to apply these improvement activities in actual
projects over a three-year span. The software quality
assurance department (SWQA) will appropriately revise
this plan and improve it based on experience with actual
projects.

Design Phase—Improvement of Function Definition. We
have improved function definition to ensure sufficient
investigation of functions and sufficient testing to remove
single-function defects early in the development phase.

Figure 8

Design
Implement

(Coding) Test Ship

ERS Function
Definition

(IRS)

Automatic
Unit and

Integration
Test

Writing
Test Script for

Automatic
Test

System
Test

R&D R&D, SWQA,
Marketing

SWQA, R&D

SWQA, R&D

Flow of Information

321

1

2

3 Final Audit

SWQA Checkpoint

Checking Content of Function Definition

Checking Test Scripts and Testing Results

Improved software development process.

We concisely describe each function’s effects, range of
parameters, minimum argument resolution, related func-
tions, and so on in the function definition (Figure 9).
Using this function definition, we can prevent duplicate
or similar functions and design the relationships of the
measurement modes and functions precisely. In addition,
we can clearly define functions corresponding to the
product specifications and clearly check the subordinate
functions, so that we can design a simple and consistent
internal software structure. We can also easily write the
test scripts for the automatic tests, since all of the neces-
sary information is in the function definitions.

SWQA, not R&D, has ownership of the template for func-
tion definition. SWQA manages and standardizes this
template to prevent quality deterioration and ensure that
improvements that have good effects are carried on to
future projects.

Checkpoint at the End of the Design Phase. The first
new checkpoint in the development process is at the end
of the design phase. SWQA confirms that all necessary
information is contained in the function definitions. SWQA
approves the function definitions before the project goes
on to the implementation phase.

Implementation Phase—Automatic Test Execution. In
this phase, SWQA mainly writes test scripts based on the
function definitions for automatic tests to detect single-
function defects. We use equivalence partitioning and
boundary value analysis to design test scripts. As for
combination-function defects, since the number of combi-
nations is almost infinite, we write test scripts based only
on the content of the function definitions. When we im-
plement the functions, we immediately execute the auto-
matic tests by using the scripts corresponding to these
functions. Thus, we confirm the quality of the software as
soon as possible. For functions already tested, we re-
execute the automatic tests periodically and check for
side effects caused by new function implementations. As
a result of these improvements, we obtain software with
no single-function defects before the system test phase,
thereby keeping the software quality high in spite of the
short development period. The test scripts are also used
in regression testing after shipment to confirm the quality
of modified software in the enhancement process. In this
way, we can reduce maintenance and enhancement costs.

93 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Figure 9

Swp

Swp

Swp

Swp

Swp

Swp

Swp

Swp

Swp

Swp

Swp

POIN <val>

SPAN <val> (Hz)

STAR <val> (Hz)

STOP <val> (Hz)

SPAN <val>
(Hz/dBm)

STAR <val>
(Hz/dBm)

STOP <val>
(Hz/dBm)

SWET <val> (s)

SWETAUTO <bool>

SWPT <enum>

SWPT <enum>

2 to 801 (int type)

0 to 510 M(Hz)

0 to Max Val (Hz)

Min Val to 510 M(Hz)

0 to 510 M(Hz),
0 to 20 (dBm)

0 to 510 M(Hz),
50 to 15 (dBm)

0 to 510 M(Hz),
50 to 15 dBm

0 (Min Meas Time) to
99:59:59 s

Off (0)/On (1)

LINF/LOGF/LIST/POWE

LINF/LIST

201 (NA, ZA),
801 (SA)

500 MHz

0 Hz

500 MHz

500 MHz,
20 dBm

0 Hz,
–50 dBm

500 MHz,
30 dBm

Min Meas
Time

On

LINF

LINF

S

S

S

S

S

S

S

S

S

S

S

S

S

S

NZ

NZ

NZ

NZ

NZ

S

2C

2C

2C

2C

2C

2C

2C

2C

2C

2C

2C

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

4

4

4

4

4

4

4

4

4

6

6

I

I

I

I

I

I

D

H

H

Module

In SWPT LIST, set MEAS
POINT of sweep. (In SA, it’s
available when SPAN 0.)

In SWPT LIST, set SPAN
value of sweep parameter.

In SWPT LIST, set START
value of sweep parameter. Min
and max value of START, STOP,
CENTER depend of RBW.

In SWPT LIST, set STOP value
of sweep parameter. Min and
max value of START, STOP,
CENTER depend on RBW.

In SWPT LIST, set SPAN
value of sweep parameter.

In SWPT LIST, set START
value of sweep parameter.

In SWPT LIST, set STOP
value of sweep parameter.

Turn sweep time auto setting
off and set arbitrary value to
sweep time. (In SA, query only.)

Select Auto and Manual of
Sweep Time (In SA, Auto only.)

Select Sweep Type.

Select Sweep Type.

Command Range Initial Value Attribution Description

SENSe
:FREQuency

:CENTer
STEP
[:INCRement]

:AUTO
:MODE
:SPAN

:FULL
:STARt
:STOP

<numeric>|DMARker|MARKer

<numeric>|DMARker|MARKer
ON|OFF
FIXed|LIST|SWEep
<numeric>|DMARker|MZAPerture

<numeric>|MARKer
<numeric>|MARKer

(Parameter changed

(Parameter changed)

(Parameter changed)

(Parameter changed)
(Parameter changed)

[no query]

[SENSe Subsystem]

(a)

(b)

An example of the improvement in function definition. (a) Before improvement. (b) After improvement.

94 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Checkpoint at the End of the Implementation Phase. At
the second new checkpoint in the development process,
SWQA confirms that the test scripts reflect all the content
of the function definitions, and that there are no signifi-
cant problems in the test results. The project cannot go
on to the system test phase without this confirmation.

System Test Phase—Redefinition of System Testing.

In an ideal testing process, we can finish system testing
when we have executed all of the test items in the test
cases we have written. However, if many single-function
defects are left in the software at the start of system test,
we will detect single-function and combination-function
defects simultaneously, and the end of testing will become
unclear. Therefore we use statistical methods, such as
convergence of the defect curve, to decide when to end
the system test phase.

In our improved process, we can start the system test
phase with high-quality code that includes only a few
single-function defects. Thus, we can redefine the testing
method to get more efficiency in detecting the remaining
defects. We divide the system test items into two test
groups. The first group uses black box testing. We write
these test cases based on the instrument characteristics
as a system and on common failures that have already
been detected in the preceding series products. The
second group is measurement application testing, which
is known as white box testing. The R&D designers, who
clearly know the measurement sequence, test the mea-
surement applications according to each instrument’s
specifications. We try to decide the end of system test
based on the completion of test items in the test cases
written by R&D and SWQA. We try not to depend on
statistical methods.

Checkpoint at the End of the System Test Phase. We use
this checkpoint as in the previous process, as an audit
point to exit the system test phase. SWQA confirms the
execution of all test items and results.

A Feasibility Study of Automatic Test

Before implementing the improved development process
described above, we wanted to understand what kind of
function is most likely to cause defects and which parts
we can’t test automatically. Therefore, we analyzed and
summarized the defect reports from a previous product
series (five products). We found that the front-panel keys,
the HP-IB remote control functions, and the Instrument

BASIC language are most likely to cause defects. We also
observed that the front-panel keys and the display are
difficult to test automatically. Based on this study, we
knew which parts of the functions needed to be written
clearly on the function definitions, and we edited the test
items and checklist to make the system test more efficient.

Application of the Improvement Process

Project Y. Product Y is an extension and revision of Prod-
uct X, a combination network, spectrum, and impedance
analyzer. The main purpose of Project Y was to change
the CRT display to a TFT (thin-film transistor) display and
the HP-IB printer driver to a parallel printer driver. Most
of the functions of the analyzer were not changed.

Since Product Y is a revision product, we didn’t have to
write new function definitions for the HP-IB commands.
Instead, we used the function reference manual, which
has the closest information to a function definition. The
main purpose of the test script was to confirm that each
command worked without fail. We also tested some com-
bination cases (e.g., testing each command with different
channels). The test script required seven weeks to write.
The total number of lines is 20,141.

For the automatic tests, we analyzed the defect reports
from five similar products and selected the ones related
to the functions that are also available in Product Y (391
defect reports in the system phase). Then we identified
the ones that could be tested automatically. The result
was 140 reports, which is about 40% of the total. The
whole process took three weeks to finish and the test
script contains 1972 lines. The rest of the defect reports
were checked manually after the end of system test.
It took about seven hours to finish this check.

Both of the above test scripts were written for an in-house
testing tool developed by the HP Santa Clara Division.3

An external controller (workstation) transfers the
command to the instrument in ASCII form, receives the
response, and decides if the test result passes or fails.

Instrument BASIC (IBASIC), the internal instrument con-
trol language, has many different functions. It comes with
a suite of 295 test programs, which we executed automati-
cally using a workstation. The workstation downloaded
each test program to the instrument, ran the program, and
saved the result. When all the programs finished running,
we checked if the result was pass or fail.

95 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

For all of the automatic testing, we used the UNIX make
command to manage the test scripts. The make command
let each test program execute sequentially.

Using the test scripts, we needed only half a day to test all
of the HP-IB commands and one day to test the IBASIC.
Since Product Y is a revision product, we also used the
test scripts to test its predecessor, Product X, to confirm
that Product Y is compatible with Product X. The test
items in the Product X checklist were easily modified to
test Product Y.

Project Z. Product Z belongs to the same product series
as Product Y (a combination network, spectrum, and
impedance analyzer). The reuse rate of source code is
77% of Product Y.

One R&D engineer took one month to finish the first draft
of the function definitions. To test the individual HP-IB
commands, since the necessary function definition infor-
mation existed, we easily modified the test script for
Product Y to test Product Z. We employed a third-party
engineer to write the test scripts. This took five weeks.

Since Product Z is in the same series as Product Y, we are
reusing the test scripts for Product Y and adding the new
test scripts corresponding to the new defects that were
detected in Product Y to test Product Z.

The IBASIC is the same as Product Y’s, so we use the same
test program for Product Z. The automatic test environ-
ment is also the same as for Product Y.

Since Product Z is still under development, we don’t have
the final results yet. We use the test scripts to confirm the
individual HP-IB commands periodically. This ensures that
the quality of the instrument’s software doesn’t degrade
as new functions are added. At this writing, we haven’t
started system test, but we plan to reuse the same product
series checklist to test Product Z.

Results

Project Y. In this project, we found 22 mistakes in the
manual, 66 defects in Product X while preparing the test
scripts, and 53 defects in Product Y during system test.
The following table lists the total time spent on testing
and the numbers of defects that were detected in Product
X in Project X and Project Y.

Table I
Defects found in Product X

Project X Project Y

Testing Time (hours) 1049 200

Number of Defects 309 88

According to this data, using the test scripts based on the
function reference manual, we detected 88 defects in
Product X during Project Y, even though we had already
invested more than 1000 test hours in Project X and the
defect curve had already converged (Figure 3). We con-
clude that testing the software with a test script increases
the ability to detect defects. Also we see that a function
definition is indispensable for writing a good test script.

Since the automatic test is executed periodically during
the implementation phase, we can assume that no single-
function defects remained in Product Y’s firmware before
system test. Since Product Y is a revision product, there
were only a few software modifications, and we could
assume that the test items for the system testing covered
all the modified cases. Therefore, we could make a deci-
sion to stop the system test when all the test items were
completed, even though the defect curve had not con-
verged (Figure 10). However, for a platform product or
an extension product that has many software modifica-
tions and much new code, the test items of the system
test are probably not complete enough to make this deci-
sion, and we will still have to use the convergence of the
defect curve to decide the end of the system test. Never-
theless, it will always be our goal to make the test items
of the system test complete enough that we can make
decisions in the future as we did in Project Y.

The test script is being used for regression testing during
enhancement of Product Y to prevent the side effects
caused by software modifications.

In Figure 11, we compare the test time and the average
defect detection time for these two projects. Because
Product Y is an extension of Product X, the results are
not exactly comparable, but using the test script appears
to be better because it didn’t take as much time to detect
the average defect.

96 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Figure 10

55

120
Test Hours

50

45

40

35

30

25

20

15

10

5
100806040200

N
um

be
r o

f D
ef

ec
ts

Defect curve for Project Y.

We needed time to write the test scripts, but the system
test phase became shorter, so the total development time
was shorter for Project Y. The enhancement cost will be
lower because we can reuse the same test script for
regression testing.

Project Z. We expect that the quality of Product Z will be
high before system test because we test Product Z periodi-
cally in the implementation phase and confirm the result
before entering system test.

The additional work of the improvement process is to
write formal function definitions and test scripts. Since
this project is the first to require a formal function defini-
tion, it took the R&D engineer one month to finish the
first draft. For the next project, we expect that the func-
tion definition can be mostly reused, so the time needed
to write it will be shorter.

The test scripts are written during the implementation
phase and do not affect the progress of the project. There-
fore, we only need to wait about a month for writing the
function definition before starting the implementation
phase, and since the time needed for system test will be
shorter, the whole development process will be faster.

Since we are reusing the test scripts of Product Y, the
time for writing test scripts for Product Z is two weeks
shorter than for Product Y. Thus, for a series product, we
can reuse the test scripts to make the process faster. Also,
making test scripts is not a complicated job, so a third-
party engineer can do it properly.

Figure 11

0.0402

0.0273

0.05

0.04

0.03

0.02

0.01

0

En
gi

ne
er

-M
on

th
s

pe
r D

ef
ec

t

En
gi

ne
er

-M
on

th
s

14

12

10

8

6

4

2

0

12.43

3.91

Project YProject X Project YProject X
(a) (b)

Defect Correction

System Test

Test Pattern

Cost of software testing for Projects X and Y. (a) Engineer-months spent on software testing. (b) Engineer-months per defect.

97 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Conclusion

We analyzed the software (firmware) development prob-
lems of the Hewlett-Packard Kobe Instrument Division
and decided on an improvement process to solve these
problems. This improvement process has been applied to
two projects: Project Y and Project Z. The results show
that we can expect the new process to keep the software
quality high with a short development period. The main
problems—deteriorating software quality and increasing
enhancement cost—have been reduced.

This improvement process will be standardized and ap-
plied to other new projects. It will also make our software
development process conform to the key process areas of
CMM (Capability Maturity Model) level 2 and some part of
level 3.1,2

Acknowledgments

We cannot overstate the importance of the work of Mitsuo
Matsumoto on the automatic IBASIC tests. We would like
to thank Akira Nukiyama and several of our colleagues
for reviewing this paper and giving valuable comments.

References

1. M.C. Paulk, et al, Capability Maturity Model for Software,

Version 1.1, Carnegie Mellon University, SEI-93-TR-024.

2. M.C. Paulk, et al, Key Practices of the Capability Maturity

Model, Version 1.1, Carnegie Mellon University, SEI-93-TR-025.

3. B. Haines, UNIX-Based HP-IB Test Tool (Ttool) Operation

Manual, 1991.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

� Go to Next Article
� Go to Journal Home Page

