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A Theoretical Derivation of Relationships
between Forecast Errors

This paper studies errors in forecasting the demand for a component used by

several products. Because data for the component demand (both actual demand

and forecast demand) at the aggregate product level is easier to obtain than at

the individual product level, the study focuses on the theoretical relationships

between forecast errors at these two levels.

With a sound theoretical foundation for understanding forecast errors, a

much more confident job can be done in forecasting and in related planning

work, even under uncertain business conditions.1

In a typical material planning process, planners are constantly challenged by

forecast inaccuracies or errors. For example, should a component forecast

error be measured for each platform for which it may be needed, or should its

forecast accuracy be measured at the aggregate level, across platforms? What

is the relation between the two accuracy measures?

This paper describes a theoretical study of forecast errors. First, we formally

define forecast errors with different rationales, derive several relationships

among them, and prove a heuristic formula proposed by Mark Sower.1 Then

we study the effects of a systematic bias on the forecast errors. Finally, we

extend our study to the situations where correlations across product demands

and time effects in demand and forecast are taken into account. Definitions

and theorems are presented first, and proofs of the theorems are given at the

end of the paper.

Basic Concepts

Consider the case of a component that can be used for the manufacture of n

different products, or platforms. For platform i (1�i�n), denote by Fi the

forecast demand for the component, and by Di the actual demand. In the

treatment of forecast and actual, we propose in this paper the following
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framework: Regard forecast demand as deterministic, or

predetermined, and actual demand as stochastic. By
stochastic, we mean that given the same operating envi-
ronment or experimental conditions, the actual demand
can be different from one operation run to another. Thus,
we can postulate a probability distribution for it.

For a generic case, denote by D the actual demand and by
F the forecast. We call the forecast unbiased if E(D)�F,
where E(D) denotes the expectation, or expected value,
of D with respect to its probability distribution. Practically
speaking, this unbiased requirement means that over many
runs under the same operating conditions, the average of
the realized demand is the same as the forecast. If there is
a deterministic quantity b�0 such that E(D)�F�b, then
we say the forecast is biased, and the bias is b. In prac-
tice, this means that there is a systematic departure of the
average realized demand from the forecast.

Throughout the paper, we often make the normality as-
sumption on the demand, that is, for unbiased forecasts,
we assume that the demand D has a normal (Gaussian)
distribution with mean F and standard deviation �, that is,
D�N(F, �2). Is this a reasonable assumption in reality?
The answer is yes. First of all, this assumption is techni-
cally equivalent to assuming that the difference ��D�F
between the actual demand D and the forecast F is nor-
mally distributed: ��N(0, �2). The validity of this latter
assumption is based on the fact that the difference be-
tween the actual demand and a good forecast is some ag-
gregation of many small random errors, and on the central
limit theorem, which states that the aggregation of many
small random errors has a limiting normal distribution.

Unbiased Forecast Case

In this section, we assume unbiased forecasting at all
platforms.1 Statistically, E(Di)�Fi, where Fi is the fore-
cast for the common component at platform i, and Di is
the actual demand of the component at platform i.

Definition 1: (Same Weight Mean Based) Define E��E(��)
to be the forecast error at the mean (average) platform
level, and Ea�E(�a) to be the forecast error at the aggre-
gate platform level, where:

�� �
1
n�

n

i�1

�Di � Fi
�

Fi
, (1a)

and

�a �

��

n

i�1

Di ��

n

i�1

Fi�

�

n

i�1

Fi

. (1b)

The rationale of defining the forecast error at the
mean level and at the aggregate level is as follows. Let
�i�|Di�Fi|/Fi. Then �i measures, in terms of the relative
difference, the forecast error at a single platform i.
Accordingly, �a measures the forecast error, also in terms
of the relative difference, at the aggregate level from all
platforms, and �� provides an estimate for the forecast
error at any individual platform since it is the average of
the forecast errors over all individual platforms. Because
all the quantities in equation 1 are stochastic, we take
expectations to get their deterministic means. Now, a
natural question is: What is the relation between the
errors at the two different levels?

Theorem 1: Based on definition 1, and assuming that 
Di�N(Fi, �2), i�1, 2, ..., n, and that the Di are uncorre-
lated (strictly speaking, we also need the joint normality
assumption, which in general can be satisfied), we have:

1. E�� n
 EaCn, where:

Cn � �
1
n�

n

i�1

1
Fi
	�

1
n�

n

i�1

Fi	. (2)

2. It is always true that Cn�1, and Cn�1 if and only if the
forecasts across all the platforms are the same.

We note that in the definition for ��, we used the same
weight, 1/n, for all platforms. If instead we use a weight
proportional to the forecast at the platform, then we have
the following:

Definition 2: (Weighted Mean Based) Define E��E(��)
and Ea�E(�a), where:

�� �
�

n

i�1

Fi

�

n

j�1

Fj

�Di � Fi
�

Fi
�

�

n

i�1

�Di � Fi
�

�

n

i�1

Fi

(3a)

and
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. (3b)

Theorem 2: Based on definition 2 and with the same
assumptions as in theorem 1, we have:

E� � n
 Ea. (4)

Mark Sower1 proposed this heuristic formula. Theorem 2
says that under suitable conditions, equation 4 holds
exactly.

Other researchers have addressed a similar problem from
the perspective of demand variability. In measuring the
relative errors of the forecast at the individual platforms,
it was assumed that �i/�i (i�1, 2, ..., n) are the same,
where �i is a measure of demand variability and �i is the
mean demand at platform i. The advantage here is we do
not need to make such a strong assumption. In fact, our
measure of the forecast error at the individual platform
level can be interpreted as the forecast error at an aver-
aged individual platform.

The following definition of error is based on this observa-
tion in practice. The standard deviation of a random vari-
able can be very large if the values this random variable
takes on are very large. A more sensible error measure of
such a random variable would be the relative error rather
than the absolute error. So, given a random variable X,
we can measure its error by the coefficient of variance
cv(X)��(X)/E(X) rather than by its standard deviation
�(X).

With the unbiased forecast assumption, the forecast error
at platform i can be measured by cv(Di). The average of
these coefficients over all platforms is a good measure of
the forecast error at the individual platform level. On the

other hand,�
n

i�1

Di is the demand from all platforms, and

�

n

i�1

Fi is the corresponding forecast, so cv��
n

i�1

Di	 is a

good measure of the forecast error at the aggregated plat-
form level.

Definition 3: (CV Based) Define:

E� �
�

n

i�1

cv(Di)�n and Ea � cv��
n

i�1

Di	.

Theorem 3: Based on definition 3, and assuming that the
Di are uncorrelated, we have

E� � n
 EaCn, (5)

where Cn is defined in equation 2. For theorem 3, we do
not have to assume normality to get the relevant results.
This is also true for theorem 4.

General Case: The Effect of Bias

We assume here that forecasts are consistently biased.
This is expressed as E(Di)�Fi�b, where b denotes the
common forecast bias. This indicates that Fi overesti-
mates demand when b�0 and underestimates demand
when b�0.

Can we extend the use of definition 3 for the forecast
errors to this general case? The answer is no. This is be-
cause the standard deviation is independent of bias, and
therefore one could erroneously conclude that the fore-
cast error is small when the standard deviation is small,
even though the bias b is very significant. Instead, the
forecast error now should be measured by the functional:

e(D, F) � E([D � F]2)

�F, (6)

rather than by the cv, which is E([D�E(D)]2)

�E(D).

Hence, in parallel with definition 3, we have the following
definition.

Definition 4: (e-Functional Based) Define:

Ec � e��
n

i�1

Di,�
n

i�1

Fi	 and E� �
�

n

i�1

e(Di, Fi)�n,

where the functional e is defined in equation 6.

If the bias b�0, then the functional e in equation 6 is
the same as the cv, and hence definitions 3 and 4 are
equivalent.
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Theorem 4: Based on definition 4, and assuming that 
Di�(Fi�b, �2),* i�1, 2, ..., n and that the Di are uncor-
related, we then have:

E� � n
 EaCn
�

2
� b2

�
2
� nb2

,
 (7)

where Cn is given in equation 2.

Since definition 1 considers the relative difference be-
tween the forecast and the actual, any bias in the forecast
will be retained in the difference, so there is no problem
in using this definition even if there is bias. However, the
relation between the two errors has changed.

Theorem 5: Based on definition 1 and the assumption that
Di � N(Fi�b, �2), i�1, 2, ..., n and that the Di are uncor-
related, we have:

E� � n
 EaCn

2
�



�e�b2

	2�2
� b[2�(b	�) � 1]

2
�



�e�b2

	2�2
� n
 b[2�( n
 b	�) � 1]

, (8)

where Cn is defined in equation 2, and �(x) is the cumula-
tive distribution function of the standard normal distribu-
tion N(0, 1) at x.

If there is no bias in the forecasting, the relationships be-
tween the errors at the two levels are exactly the same for

definitions 1 and 3: E� � n
 EaCn. This formula, with the
introduction of the constant Cn, is slightly different from
the hypothesized equation 4. As noted in theorem 1, it is
always true that Cn�1. If we use definition 2, then equa-
tion 4 holds exactly.

If there is bias in the forecasting, then in each relationship
formula (equation 7 or equation 8), there is another multi-
plying factor that reflects the effect of the bias. One can
easily find that both of these multiplying factors are less
than or equal to 1. This implies that, compared to the
error at the component level, the error at the platform-
component level when forecast bias exists is less than
when the forecast bias does not exist.

If bias does exist, as it does in reality, it seems that the
multiplying factor resulting from bias in either equation 7
or equation 8 should be taken into consideration, with
suitable estimation of the parameters involved.

* The notation X�(�, �2) means that X has mean � and standard deviation � but is not
necessarily normally distributed.

Correlated Demands

It is reasonable to assume that demand for a component
for one platform affects demand for this component for
another platform. Also, for a given platform, there is usu-
ally a strong correlation between the current demand and
the historical demands. The forecast is usually made
based on the historical demands. In this section, we first
propose a correlated multivariate normal distribution
model for the demand stream when the platform is
indexed, and then propose a time-series model for the
demand and forecast streams when time is indexed. Our
goal is to expand our study of the relationship between
the two layers of forecast errors in the presence of cor-
relations. Throughout this section, we assume unbiased
forecasts, and use the weighted average definition (defini-
tion 3) for the forecast error.

Correlated Normal Distribution Model at a Time Point. In
this subsection we consider the case where there is cor-
relation across platform demands, but we still assume
that time does not affect demand. Suppose that the de-
mand stream Di, i�1, 2, ..., n can be modeled by a corre-
lated normal distribution such that Di�N(Fi, �2) for i�1,
2, ..., n and that there is a correlation between different Di

expressed as Cov(Di, Dj) ��
2ρij for 1�i�j�n. With this

assumption on the demand stream, we have the following
result.

Theorem 6: Based on definition 2 and the above corre-
lated normal distribution modeling for the demand
stream, we have:

E� �
n

�

1�i�j�n

�ij � n



Ea. (9)

In particular, if ρij�ρ for all 1�i�j�n, then we get:

E� �

n


(n � 1)�� 1


Ea. (10)

When the common correlation coefficient ρ is 0 or near 0,
we see that equation 4 holds exactly or approximately.

Autoregressive Time Series Model. Now we take into
consideration the time effect in the product demand. For

platform i, i�1, 2, ..., n at time t, t�1, 2, ..., denote by D(t)
i
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the demand and F(t)
i the forecast. Suppose that the de-

mand stream over time at each platform can be modeled
by an autoregressive model AR(p). At platform i, the auto-
regressive model assumes that the demand at the current
time t is a linear function of the past demands plus a ran-
dom disturbance, that is:

D(t)
i ��

p

j�1

ai,jD
(t�j)
i � �

(t)
i ,

where the ai,j are constant coefficients. Further, suppose

that the forecast F(t)
i  is optimal given the historical de-

mand profile �(t�1)
i � ��D(1)

i , D(2)
i , ..., D(t�1)

i
. That is,

with D(0)
i , D(�1)

i , ..., D(�(p�1))
i  properly initialized, for

t�1:

D(t)
i � ai,1D(t�1)

i � ai,2D(t�2)
i ����� ai,pD(t�p)

i � �
(t)
i ,

and

F(t)
i � E�D(t)

i
��

(t�1)
i



� ai,1D(t�1)
i � ai,2D(t�2)

i ����� ai,pD(t�p)
i ,

where  �(1)
i , �

(2)
i , ..., �

(t)
i , ... are independently and iden-

tically distributed as N(0, �2) and the random disturbance

at time t, that is, �(t)
i , is independent of the demand stream

before time t, that is, {D(t�1)
i , D(t�2)

i , ...}. Also, we

assume independence across platforms. With the above
modeling of the demand and forecast, what can we say
about the relationship between the two layers of forecast
errors?

Theorem 7: Based on definition 1 or 2 and the above time-
series modeling for the demand stream and forecast
stream, and assuming that the variances at all platforms
are the same, then at any time point, if definition 1 is
used:

E(t)
�

� n� E(t)
a C

~
n, (11)

where

C
~

n �

E�1
n�

n

i�1

1
F(t)
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E�
�

�

�

n

�

n

i�1

F(t)
i
�
�

�

�

.

and if definition 2 is used, then:

E(t)
�

� n� E(t)
a . (12)

Rewriting Cn in equation 2 as

Cn �

1
n�

n

i�1

1
F(t)

i

n

�

n

i�1

F(t)
i

and taking expectations for the numerator and denomina-

tor separately in the expression leads to C
~

n. Hence, it is

always true that C
~

n�1.

Proofs

Theorem 1 is a special case of theorem 5. Theorem 3 is a
special case of theorem 4. The proof for theorem 6 is simi-
lar to that for theorem 5, with an application of lemma 1.

Lemma 1: If X�N(b, �2), then:

E|X| � 2
�

� �e�b2
	2�2

� b[2�(b	�) � 1] � H(b, �). (13)

Proof of Lemma 1: Without loss of generality, we can
assume that ��1, since otherwise we can make a simple
transformation Y = X/�.

E|X| � 1
2��




�

��

|x|e�(x�b)2
	2dx

�

1
2��




�

0

|x|e�(x�b)2
	2dx �

1
2��




�

0

|y|e�(y�b)2
	2dy
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� I(b) � I(� b), where

I(b) � 1
2��

�

�

0

xe�(x�b)2

2dx

�

1
2��

�

�

�b

(y � b)e�y2

2dy

�

1
2��

e�b2

2

� b�(b), and hence

E|X| � 2
2��

e�b2

2

� b�(b) � (� b)�(� b)

�

2
�

� e�b2

2

� b[2�(b) � 1].

Proof of Theorem 1 Parts 2 and 3. First note that func-
tion ϕ(x)�1/x is convex over (0, �). Let random variable
X have a uniform distribution on the set {Fi: 1�i�n}, that
is, P(X�Fi) �1/n. An application of the Jensen inequality2

Eϕ(X)	ϕ(EX) leads to the desired inequality. The second
part is based on the condition for the Jensen inequality to
become an equality.

Proof of Theorem 4:

e(Di, Fi) �
E([Di � Fi]2)�

Fi
�

�
2
� b2�

Fi
,

E� �
1
n�

n

i�1

e(Di, Fi) �
1
n�

n

i�1

�
2
� b2�

Fi
,

Ea � e�
n

i�1

Di,�
n

i�1

Fi� �

n�2
� (nb)2�

�

n

i�1
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.

Hence we have:

E�

Ea
� n� �

2
� b2

�
2
� nb2

� Cn.

Proof of Theorem 5: Noting that:

Di � Fi � N(b, �
2) and �

n

i�1

(Di � Fi) � N(nb, n�2),

then we have:
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E(e�)
E(ea)
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1
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1

�

n
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H(b, �)

H(nb, n� �)
(by lemma 1)

� n� Cn

2
�

�
�e�b2


2�2
� b[2�(b
�) � 1]

2
�

�
�e�b2


2�2
� n� b[2�( n� b
�) � 1]

.

Proof of Theorem 7: The proofs for equations 11 and 12
are similar. We give a proof for equation 11 only.  First

notice that D(t)
i �F(t)

i ��
(t)
i �N(0, �i

2
�. At any given

time t, by the definitions for E(t)
�

 and E(t)
a , we have:
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E
��
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i
�
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1
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i
��E 1
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�
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n
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2
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� �E 1
F(t)

i

�.

This second step follows from the fact that �(t)
i  is inde-

pendent of demands before time t, and hence independent

of the optimal forecast at time t, F(t)
i . The last step follows

from lemma 1 and the same variance assumption across
platforms.
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�
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�

�

�

.

The reasoning is the same as for proving E(t)
�

 above.

Conclusion

Forecast errors increase the complexity and difficulty of
the production planning process. This results in excessive
inventory costs and reduces on-time delivery. In this paper
we have studied the forecast errors for the case of several
products using the same component. Because data for the
component demand (both actual demand and forecast
demand) is easier to obtain at the aggregate product level
than at the individual product level, we focused on the
theoretical relationships between forecast errors at these
two levels.

Our first task was to propose formal definitions for mea-
suring forecast errors under different rationales and tech-
nical assumptions. The second task was to formally derive

relationships between forecast errors at the two levels. As
part of our work we proved the validity of a heuristic for-
mula proposed by Mark Sower of the business operations
planning department at the HP Roseville, California site.

In addition to analyzing the two-level problem, we derived
a theoretical basis for relaxing the usual assumptions con-
cerning correlations in the data across products and over
time.
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