
August 1998 • The Hewlett-Packard Journal30Article 3 •  1998 Hewlett-Packard Company

Techniques for Higher-Performance Boolean
Equivalence Verification

The techniques and algorithms presented in this paper are a result of six years’

experience in researching, developing, and integrating Boolean equivalence

verification into the HP Convex Division’s ASIC design flow. We have discovered

that a high-performance equivalence checker is attainable through careful

memory management, the use of bus grouping techniques during the

RTL-to-equation translation process, hierarchical to flat name mapping

considerations, subequivalence point cone partitioning, solving the false

negative verification problem, and building minimal binary decision diagrams.

In 1965 Gordon Moore observed that the complexity and density of the

silicon chip had doubled every year since its introduction, and accompanying

this cycle was a proportional reduction in cost. He then boldly predicted—what

is now referred to as Moore’s Law—that this technology trend would continue.

The period for this cycle was later revised to 18 months. Yet the performance

of simulators, the main process for verifying integrated circuit design, has not

kept pace with this silicon density trend. In fact, as transistor counts continue

to increase along the Moore’s Law curve, and as the design process transitions

from a higher-level RTL (Register Transfer Language) description to its gate-

level implementation, simulation performance quickly becomes the major

bottleneck in the design flow.

In 1990, the HP Convex Division was designing high performance systems that

used ASICs with gate counts on the order of 100,000 raw gates. During this

period the HP Convex Division used a third-party simulator for both RTL and

gate-level verification. This simulator had the distinction of being the fastest

RTL simulator on the market, but it also suffered the misfortune of being one

of the market’s slowest gate-level simulators in our environment. Hence,

��		� �� ��
��	

��		� �� ��
��	

Harry Foster joined the

HP Convex Division in

1989 after receiving his

MSCS degree from the University of Texas.

An engineer/scientist, he has been responsible

for CAD tool research and development, formal

verification, resynthesis, and a clock tree

builder. Before coming to HP, he worked at

Texas Instruments. He was born in Bethesda,

Maryland, and likes traveling, weight training,

and inline skating.

August 1998 • The Hewlett-Packard Journal31Article 3 •  1998 Hewlett-Packard Company

running gate-level simulations quickly became a major
bottleneck in the HP Convex Division system design flow.
In addition, these regression simulations could not com-
pletely guarantee equivalence between the final gate-level
implementation and its original RTL specification. This
resulted in a lack of confidence in the final design.

To address these problems, the HP Convex Division began
researching alternative methods to regression simulation,
resulting in a high-performance equivalence checker
known as lover (LOgic VERifier).

Today, the HP Convex Division is delivering high-perfor-
mance systems built with 0.35-�m CMOS ASICs having on
the order of 1.1 million raw gates.1 lover has successfully
kept pace with today’s silicon density growth, and has
completely eliminated the need for gate-level regression
simulations. Our very large system-level simulations are
now performed entirely at the faster RTL level when com-
bining the various ASIC models. This has been made pos-
sible by incorporating our high-performance equivalence
checker into our design flow. We now have confidence
that our gate-level implementation completely matches
its RTL description.

Boolean Equivalence Requirements

Our experience has been that last-minute hand tweaks in
the final place-and-route netlist require a quick and simple
verification process that can handle a complete chip
RTL-to-gate comparison. Such hand tweaks, and all hand-
generated gates, are where most logic errors are inadver-
tently inserted into the design. The following list of re-
quirements drove the development of the HP Convex
Division’s high-performance equivalence checker:

� Must support RTL-to-RTL (flat and hierarchical)
comparisons during the early development phase.

� Must support both synthesizable and nonsynthesizable
Verilog RTL constructs for RTL-to-gate comparisons.

� Must support a simple one-step process for comparison
of the complete chip design (RTL-to-gate, gate-to-gate,
hierarchical-to-flat).

� Must support the same Verilog constructs and policies
defined for the entire HP Convex Division design flow
(from our cycle-based simulator to our place-and-route
tools), along with standard Verilog libraries.

Boolean Equivalence Verification

Boolean equivalence verification is a technique of mathe-
matically proving that two design models are logically
equivalent (e.g., a hierarchical RTL description and a flat
gate-level netlist). This is accomplished by the following
steps:

1. Compile the two designs. Convert a higher-level Verilog
RTL specification into a set of lower-level equations and
state points, which are represented in some internal data
structure format. For a structural or gate-level implemen-
tation, the process includes resolving instance references
before generating equations.

2. Identify equivalence points. Identify a set of controlla-
bility and observability cross-design relationships. These
relationships are referred to as equivalence points, and
at a minimum consist of primary inputs, primary outputs,
and register or state boundaries.

3. Verify equivalence. Verify the logical equivalence
between each pair of observability points by evaluating
the following equivalence equation:

�

�m1(xi)�m2(xi)� � �xi � De(x)� � 1. (1)

In the equivalence equation (equation 1), � is the propo-
sitional logic NOT or negation operator, � is the proposi-
tional logic OR or disjunction operator, � is the Boolean
XOR operator, � is the set intersection operator, m1 repre-
sents the logic expression (or cone of logic*) for an ob-
servability equivalence point found in design model 1, and
m2 is the expression for the corresponding point found in
design model 2. The variables xi are the cone’s input or
controllability equivalence points for both models’ logic
expressions. Finally, De(x) is known as the don’t care set

for the equivalence point e, and consists of all possible
values of x for which the logical expressions m1 and m2

do not have to match. Figure 1 graphically illustrates the
process of proving equivalence between two observability
equivalence points.

Another way to view Figure 1 is to observe that if a com-
bination of xi can be found that results in m1(xi) evaluating
to a different value than m2(xi), and xi is not contained
within the don’t care set De(x), then the two models are

* A cone of logic is the set of gates or subexpressions that fan into a single point, either a
register or an equation variable.

August 1998 • The Hewlett-Packard Journal32Article 3 •  1998 Hewlett-Packard Company

Figure 1

x1

Equal?

Equivalence Point
for Model 1

e

e

Equivalence Point
for Model 2

De(x1, x2, x3, x4) Don’t Care Set

x2
x3
x4

x1
x2
x3
x4

m1

m2

Proving equivalence.

formally proved different by the following nonequivalence

equation:

�m1(xi)�m2(xi)� ��

�xi � De(x)� � 1, (2)

where � is the propositional logic AND or conjunction
operator. Finding an xi that will satisfy the nonequiva-
lence equation, equation 2, is NP-complete.* In general,
determining equivalence between two Boolean expres-
sions is NP-complete. This means, as Bryant2 points out,
that a solution’s time complexity (in the worst case) will
grow exponentially with the size of the problem.

Instead of trying to determine inequality by finding a value
for x that satisfies the nonequivalence equation, a better
solution is to determine the equality of m1 and m2 through
a specific or unique symbolic or graphical representation,
such as an ordered-reduced binary decision diagram

(OBDD).

Ordered-Reduced Binary Decision Diagrams

An ordered-reduced binary decision diagram (OBDD) is a
directed acyclic graph representation of a Boolean func-
tion.2 The unique characteristic of an OBDD is that it is a
canonical-form representation of a Boolean function,
which means that the two equations m1 and m2 in our
previous example will have exactly the same OBDD rep-
resentation when they are equivalent. This is always true
if a common ordering of the controllability equivalence
points is used to construct the OBDDs for m1 and m2.

Choosing an equivalence point input ordering can, in
some cases, influence the resulting size of the OBDD.
In addition, finding an optimal ordering of equivalence

* An NP-complete or co-NP-complete problem is a relatively intractable problem requiring
an exponential time for its solution. See reference 3.

Figure 2

a

d
b

c

0 1

0

0

0
0

1

1
1

1

(a & d) | (b & c)

OBDD (ordered-reduced binary decision diagram) with
good ordering.

points in an attempt to minimize an OBDD is itself a
co-NP-complete problem.2,3 However, for most cases it is
only necessary to find a good ordering, or simply one that
works. Techniques for minimizing the size of an OBDD
will be described later in this paper.

Figures 2 and 3 show two examples of an OBDD for the
Boolean function (a & d) | (b & c), where & is the Boolean
AND operator and | is the Boolean OR operator.

Performance Techniques

This section provides details and techniques for achieving
high performance in the Boolean equivalence verification
process. Some of the techniques can be incorporated into
a user’s existing design flow to achieve higher performance
from a commercial equivalence checker.

Figure 3

b

a

b

c c

d

10

0

10

0

0

0

0

1

1

1
1

1

(a & d) | (b & c)

OBDD with not-so-good ordering.

August 1998 • The Hewlett-Packard Journal33Article 3 •  1998 Hewlett-Packard Company

Figure 4

module modA();
 modC c ();

module top();
 modA a ();
 modB b ();

module top();
 wire \a.c.foo ;
 wire \b.d.boo ;

module modB();
 modD d ();

module modC();
wire foo ; module modD();

wire boo ;

(a) (b)

Hierarchical to flat name mapping. (a) Hierarchical RTL and gates. (b) Flat gate description.

Don’t Throw Away Useful Information. When establish-
ing an ASIC design flow, it is a benefit to view the entire
flow globally—not just the process of piecing together
various CAD tools (simulators, equivalence checkers,
place-and-route tools, etc.). Why throw out valuable in-
formation from one process in the design flow and force
another process to reconstruct it at a significant cost in
performance?

At the HP Convex Division, we’ve designed our flow such
that the identification of registers and primary inputs and
outputs is consistent across the entire flow. The same
hierarchical point in a Verilog cycle-based simulation
run can be referenced in a flat place-and-route Verilog
netlist without having to derive these common points
computationally.

Name Mapping. lover will map the standard cross-design
pairs of controllability and observability equivalence
points directly as a result of the the HP Convex Division
flow’s naming convention. Figure 4 helps illustrate how
name mapping can be preserved between a hierarchical
RTL Verilog tree of modules and a single flat gate-level
description.

To support non-name-based mapping of equivalence
points, that is, designs that violate the HP Convex Divi-
sion flow naming conventions, lover will accept equiva-
lence mapping files containing the two designs’ net pair
relationships. In addition, the user can provide a special
filter function, which will automate the process of resolv-
ing cross-design name mapping for special cases.

For example, let f1 be a special mapping function for
design model 1 and f2 be a special mapping function for
design model 2. Then an equivalence point will be estab-
lished whenever f1(�) = f2(�). This allows the two models’
Verilog wire and register names (or strings � and �) to
differ, but resolve to the same equivalence point through
their special mapping functions.

Cone Partitioning. A technique known as cone partition-

ing is used to minimize the size of the OBDDs built during
the verification process, since smaller OBDDs require
significantly less processing time and consume much less
memory than larger ones. Cone partitioning is the process
of taking a large cone of logic and dividing it into a set of
smaller sized cones. Figure 5 helps illustrate this concept.

August 1998 • The Hewlett-Packard Journal34Article 3 •  1998 Hewlett-Packard Company

Figure 5

(a) (b)

Cone partitioning.(a) Large cone of logic. (b) Set of
partitioned cones.

The two designs verified by lover are stored internally in a
compact and highly efficient net/primitive relational data
structure. OBDDs are built from the relational data struc-
ture only on demand for the specific partitioned cone of
logic being proved, and then immediately freed after their
use. This eliminates the need to optimize the specific
cone’s OBDD into the entire set of OBDDs for a design. In
addition to achieving higher performance during the veri-
fication process, this ensures that any differences found
between the partitioned cones tends to be isolated down
to either a handful of gates or a few lines of RTL code.
This greatly simplifies the engineer’s debug effort.

Another advantage of cone partitioning is that it becomes
unnecessary to spend processing time minimizing equa-
tions for large cones of logic, since they are automatically
decomposed into a set of smaller and simpler cones.

In general, cones of logic are bounded by equivalence

points, which consist of registers and ASIC input and out-
put ports. However, lover takes advantage of a set of pairs
of internally cross-design equivalent relationships (e.g.,
nets or subexpressions), which we refer to as subequiva-

lence points, to partition large cones. Numerous methods
have been developed to compute a set of cross-circuit
subequivalence points based on the structural informa-
tion or modular interfaces.4 Costlier ATPG (automatic
test pattern generator) techniques are commonly used to
identify and map subequivalence points between designs
lacking a consistent naming convention. lover determines
subequivalence points directly without performing any
intensive computations by taking advantage of the con-
sistent name mapping convention built into the the HP
Convex Division design flow. Numerous subequivalence
points are derived directly from the module’s hierarchical
boundaries.

In addition, lover attempts to map the Verilog module’s
internal wire and register variable names between de-
signs. For example, Synopsys will unroll the RTL Verilog
wire and register bus ranges as follows:

wire [0:3] foo;

will be synthesized into gates with the following unrolled
names:

wire \foo[0], \foo[1], \foo[2], \foo[3];

lover recognizes Synopsys’ unrolled naming convention
and will map these points back to the original RTL de-
scription. This results in a significantly better cone parti-
tion than limiting the subequivalence points to only the
structural or module interface.

The performance gains achieved through cone partitioning
are highly variable and dependent on a circuit’s topology.
Some modules’ measured performance gains have been
on the order of 20 times, while other modules have suf-
fered a performance loss of 1.5 times when applying a
maximum cone partition. The performance gains tend to
increase as the proof moves higher up the hierarchy of
modules (due to larger cones). In general, we’ve observed
that cone partitioning contributes to about a 40% increase
in performance over the entire chip. More important, cone
partitioning allows us to prove certain topologies contain-
ing large cones of logic that would be impractical to prove
using OBDDs.

OBDD Input Ordering. Cone partitioning has the addition-
al advantage of simplifying the ordering of OBDDs by re-
ducing the size of the problem. lover uses a simple topo-
logical search through these smaller partitioned cones,
which yields an excellent variable ordering for most cases.
This search method was first proposed by Fujita,5 and
consists of a simple depth-first search through a circuit’s
various logic levels, starting at its output and working
backwards towards its controllability equivalence points.
The equivalence points encountered first in the search are
placed at the beginning of the OBDD variable ordering.

Solving the False Negative Problem. Cone partitioning
techniques used to derive cross-circuit subequivalence
points can lead to a proof condition known as a false neg-

ative. This quite often forces the equivalence checker into
a more aggressive and costlier performance mode to com-
plete the proof. We have developed a method of identifying
a false negative condition while still remaining in the faster

August 1998 • The Hewlett-Packard Journal35Article 3 •  1998 Hewlett-Packard Company

Figure 6

e

x1x0

x2

x3

m2

m1(x1, x2, x3) m2(x1, x2, x3)
when x1 1 and x2 1

False negative.

name-mapping mode throughout the entire verification
process.

One type of false negative can occur when the RTL speci-
fies a don’t-care directive to the synthesis tool, and the
equivalence checker does not account for the don’t care
set De(x) in equation 1.

Another more troublesome type of false negative can occur
when the synthesis process recognizes a don’t care opti-
mization opportunity not originally specified in the RTL.
This can occur when the synthesis step is applied to a sub-
expression, which then takes an optimization advantage
over the full cone of logic (e.g., generating gates for a sub-
expression with the knowledge that a specific combination
of values on its inputs is not possible).

Figure 6 provides a simple example of this problem. It is
possible that the partitioned cone m2’s synthesized logic
will be optimized with the knowledge that x1 and x2 are
always mutually exclusive. This can lead to a false nega-
tive proof on the partitioned cones m1(x1, x2, x3) and
m2(x1, x2, x3) for the impossible case x1�1 and x2�1.

However, if the subequivalence points that induced the
false negative condition are removed from the cone parti-
tion boundaries of m1 and m2 (e.g., x1 and x2), the result-
ing larger cone partition m1′(x0, x3) is easily proved to be
equivalent to m2′(x0, x3). Figure 7 helps illustrate how
the false negative condition can be eliminated by viewing
a larger partition of the cone.

There are numerous situations that can induce a false
negative condition, and most are much more complex
than the simple example provided in Figure 6. lover has
algorithms built into it that will detect and remove all
false negative conditions. These algorithms are invoked

only when nonequivalence has been determined between
observability points.

The algorithm used to solve a false negative performs a
topological or breadth-first search through the levelized
cone of logic, removing the first input or controllability
equivalence point encountered. It then reproves the re-
sulting larger cone. The following steps describe the algo-
rithm used by lover to remove a false negative condition:

1. Levelize the cone of logic by assigning the observability
equivalence point the number 0. Then, step back to the
next level of logic in the cone, assigning a logic level num-
ber to each logic primitive and net. Continue this process
back through all levels of logic until reaching the cone’s
controllability equivalence points.

2. Remove the lowest level of logic (or numbered) con-
trollability subequivalence point, resulting in a larger cone
partition.

3. Relevelize the new large cone of logic.

4. Identify and order the new set of input controllability
equivalence points.

5. Try reproving the new larger cone partition with the
new set of controllability subequivalence points.

6. If the new cone partition is proved nonequivalent and
we can continue removing subequivalence points (i.e., we
haven’t reached a register or ASIC port boundary) go to

Figure 7

em2

x0

x3

m2

m1(x0, x3) m2(x0, x3)

Solving the false negative problem.

August 1998 • The Hewlett-Packard Journal36Article 3 •  1998 Hewlett-Packard Company

step 2. Otherwise, we are done. If step 5 is proven, the two
cones are equivalent.

Process Memory Considerations. Most high-performance
tools require their own memory management utility to
reduce the system overhead time normally associated
with searching a process’s large memory allocation table.
lover implements three methods of managing memory: (1)
recycle high-use data structure elements during compila-
tion, (2) ensure that memory is unfragmented when build-
ing OBDDs (i.e., at the start of each cone’s proof), and (3)
maintain and manipulate a single grouped structure repre-
sentation for equations containing buses.

� High-Use Data Structure Recycling. The various data
structures (or C typedefs) used during the compilation
process can be recycled when it becomes necessary to
free them. Recycling is a technique of linking the specific
structure types together into a free list. Later compila-
tion steps can tap into these lists of high-use data struc-
ture elements and not incur any of the system overhead
normally associated with allocating or freeing memory.
We have observed performance gains in the order of
1.25 times for small designs and up to 2 times for larger
designs by using data structure recycling techniques.

� OBDD Unfragmented Memory Management. A block of
memory should be reserved for use by the OBDD mem-
ory management utilities. Once a proof is complete for a
partitioned cone, its memory block can be quickly reset
to its original unfragmented state by simply resetting
a few pointers. Working with a block of unfragmented
memory increases the chances of fitting a cone’s OBDD
into the system’s cache. The performance gains achieved
by controlling the fragmentation of memory are signifi-
cant, but hard to quantify. In general, we have observed
that the performance of manipulating OBDDs degrades
linearly as memory fragmentation increases.

� Grouping Structures for Verilog Buses. Care should be
taken to retain the buses within an equation as a single
grouped data structure element for as long as possible.
Expanding an equation containing buses into its individ-
ual bits too soon will result in a memory explosion dur-
ing the compilation process and force unnecessary elab-
oration on the equation’s replicated data structures (i.e.,
process duplication while manipulating the individual
bits for a bused expression).

The Don’t Care Set. As a final comment on performance
techniques, we need to point out that the HP Convex
Division design flow has a requirement of simulating the
ATPG vector set on the RTL. This helps flush out any
ATPG model library problem and provides an additional
sanity check and assurance that Boolean equivalence veri-
fication was performed on the entire design. An additional
benefit of verifying the ATPG vectors at the RTL level is a
potential tenfold speedup in simulation performance com-
pared to a gate-level simulation of the vector set.

To support RTL simulation of the ATPG vectors, the Veri-
log control structures (e.g., case and if) must be fully speci-
fied or defaulted to a known value. lover takes advantage
of this flow requirement and makes no attempt to gather
and process the don’t-care set De(x) in equation 1. We
have developed linting tools within our flow to ensure that
these control structures are fully specified. In addition,
lover detects violations of this ATPG RTL requirement.

Performance Gains

This section demonstrates the performance gains that can
be achieved through techniques described in this paper.
The benchmarks for Tables I and II were performed on
an HP S-Class technical server (a 16-way symmetric multi-
processing machine based on the HP PA 8000 processor
with 4G bytes of main memory). The single-threaded per-
formance times provided for lover include a composite of
the RTL and gate-level model compilation times, as well
as the verification step (unlike most commercial tools,
compilation and verification are performed within a single
process).

Table I describes four recently designed 0.35-�m CMOS
ASICs built for Hewlett-Packard’s Exemplar S-Class and
X-Class technical servers. These times represent a com-
parison of a full hierarchical RTL Verilog model to its
complete-chip flat gate-level netlist.

Table II presents the gate-to-gate run-time performance
for the same four ASICs. These times represent a com-
plete chip hierarchical gate-level model (directly out of
synthesis) compared to its final hand-tweaked flat place-
and-route netlist.

August 1998 • The Hewlett-Packard Journal37Article 3 •  1998 Hewlett-Packard Company

Table I
RTL-to-Gate lover Results

Chip Name
Size

(kgates) Minutes GBytes

Processor Interface 550 116 1.3

Crossbar 500 26 1.1

Memory Interface 570 68 1.3

Node-to-Node Interface 300 56 1.0

Table II
Gate-to-Gate lover Results

Chip Name
Size

(kgates) Minutes GBytes

Processor Interface 550 20 1.2

Crossbar 500 9 0.9

Memory Interface 570 20 1.2

Node-to-Node Interface 300 10 0.9

Additional Performance Gains

The Hewlett-Packard Convex Division is in the business
of researching and developing symmetric multiprocessing
high-performance servers. Historically, most vendors’ CAD
tools have lagged behind the design requirements for our
next-generation systems. To solve the vast and escalating
problems encountered during the design of these systems,
the HP Convex Division has begun research in the area of
parallel CAD solutions.6 A prototype multithreaded equiv-
alence checker (p-lover) has been developed to investigate
the potential performance gains achievable through paral-
lel processing.

The prototype multithreaded equivalence checker is based
on lover’s single-threaded proof engine. A front-end input
compiler and data structure emulation engine was devel-
oped to feed the parallel threads with partitioned cones of
logic for verification.

Figure 8 shows the speedup factors we obtained with
p-lover when launching two, four, and six threads. Note
the superlinear performance we were able to achieve with

two threads (see reference 6 for a discussion of super-
linear behavior). Each thread only contributed a 4% in-
crease in the overall process memory size. This can be
attributed to a single program image for the compiled
net and primitive relational data structures, which were
stored in globally shared memory.

The following is a list of multithreaded tool design consid-
erations we’ve identified while developing our prototype
equivalence checker:

� Long Threads. To reduce the overhead incurred when
launching threads, the full set of observability equiva-
lence points needs to be partitioned into similar-sized
subsets or lists for each thread (i.e., threads should be
launched to prove a list of cones and not a single point).
Figure 9 helps illustrate this idea.

� Thread Balancing. When a thread finishes proving its
list of observability equivalence points, the remaining
threads should rebalance their list of unproven cones
to maintain maximum tool performance.

� Thread Memory Management. Each thread must have
its own self-contained memory management and OBDD
utility.

Figure 8

7

6

5

4

3

2

1
1 2 3 4 5 6 7

Number of Threads

Sp
ee

du
p

Fa
ct

or

Multithreaded performance.

August 1998 • The Hewlett-Packard Journal38Article 3 •  1998 Hewlett-Packard Company

Figure 9

Compile
and

Partition
Cones

List of Cones

List of Cones

List of Cones

List of Cones

Proof Thread 1

Proof Thread 2

Proof Thread 3

Proof Thread n

Report
Errors

Multithreaded equivalence checker.

� System Resources and Locking. All I/O and logging must
be eliminated from the individual launched threads.
Otherwise, the locking and unlocking schemes built into
the system resource’s critical sections will dramatically
degrade the tool’s performance. Errors can be flagged
in internal data structures and reported after all threads
have finished processing their individual lists of equiva-
lence points.

A production version of p-lover will require additional
research to eliminate some of the locking requirements
necessary when addressing globally shared memory.
In particular, solving the false negative problem in a
multithreaded environment will require some additional
thought. However, the potential performance gains
obtainable through a multithreaded equivalence checker
are attractive.

Conclusion

Boolean equivalence verification, an integral process
within the HP Convex Division’s ASIC design flow, bridges
the verification gap between an ASIC’s high-level RTL
used for simulation and its place-and-route gate-level net-
list. We have presented techniques in this paper that have
contributed to the development of a Boolean equivalence
checker with performance on the order of 100 times faster
than many currently available commercial tools. Even a
commercial equivalence checker will benefit substantially
if its users understand a few of the techniques we have
presented and apply them directly to their design flow
(e.g., name mapping, subequivalence points, and cone
partitioning concepts). Finally, we have presented data
from a prototype multithreaded equivalence checker to
illustrate that an even higher performance level is attain-
able through a parallel solution.

References

1. L. Bening, T. Brewer, H. Foster, J. Quigley, B. Sussman, P. Vogel,
and A. Wells, “Physical Design of 0.35-�m Gate Arrays for Sym-
metric Multiprocessing Servers,” Hewlett-Packard Journal,
Vol. 48, no. 2, April 1997, pp. 95-103.

2. R. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation,” IEEE Transactions on Computers, August 1986,
pp. 677-691.

3. M. Garey and D. Johnson, Computers and Intractability:

A Guide to the Theory of NP-Completeness, Freeman, 1979.

4. E. Cerny and C. Mauras, “Tautology Checking Using Cross-
Controllability and Cross-Observability Relations,” IEEE

Transactions on Computers, January 1990, pp. 34-37.

5. M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation and Im-
provements of Boolean Comparison Method Based on Binary
Decision Diagrams,” International Conference on Computer-

Aided Design, November 1988, pp. 2-5.

6. L. Bening, “Putting Multi-Threaded Simulation To Work,”
accessible on the World Wide Web at URL:
http://www.hp.com/wsg/tech/supercon96/index.html

� Go to Next Article
� Go to Journal Home Page

http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/98aug/au98a4.htm

