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Developing Fusion Objects for

Instruments

The successful application of object-oriented technology to
real-world problems is a nontrivial task. This is particularly true for
developers transitioning from nonobject-oriented methods to
object-oriented methods. Key factors that improve the probability of
success in applying object-oriented methods are selecting an
object-oriented method, developing a process definition, and
continually improving the process.

by Antonio A. Dicolen and Jerry J. Liu

Object-oriented technology is fast approaching mainstream status in the software community. Many software developers are
interested in becoming object-oriented practitioners. Managers, once skeptical of its value, are considering its use in their
business enterprises. This technology is old enough not to be a fad and new enough to be recognized by customers as high
technology.

Within the embedded community (i.e., microprocessor-based instrumentation) at HP, there is significant interest in adopting
object-oriented technology for the development of new products. However, the adoption rate of object-oriented technology
at HP has been hampered by earlier negative experiences. Attempts to use object-oriented technology in instruments
occurred as early as the mid 1980s. At that time the technology was in its infancy. The methods for employing the technology
were immature and the development tools necessary for its effective use were nonexistent. Application of the technology at
that time resulted in unmet product requirements.

These experiences hindered further development using object-oriented technology. Object-oriented technology became
synonymous with slow speed, high risk, and failure. This perception imprinted itself on the culture of HP divisions using
embedded software technology. It was not until the early 1990s that this perception began to change. As engineering
productivity became an issue for management, software reuse emerged as a possible solution. With reuse as a business goal,
an object-oriented approach was once again considered as a means of achieving that goal.

It is important to recognize that reuse and object-oriented technology are not synonymous since it is possible to achieve
reuse without an object-oriented approach. Software math libraries are a prime example of this fact. This type of reuse is
called library reuse. It is the most common and the oldest form of software reuse. Generative reuse, such as that provided
by tools like lex and yacc, is another form of software reuse. In general these tools use a common implementation of a state
machine and allow the user to modify its behavior when certain states are reached.

Another type of reuse is framework reuse. Microsoft  Windows’ user interface is an example of framework reuse. In
framework reuse, the interaction among the system components is reused in the different implementations of the system.
There may be certain common code components that some, but not necessarily all, of the implementations use. However,
the framework is what all these systems have in common. Microsoft foundation classes are an example of common code
components. Menu bars, icon locations, and pop-up windows are examples of elements in the framework. The framework
specifies their behaviors and responsibilities.

One reuse project based on this approach was a firmware platform for instruments developed at our division. The goal was
to design an object-oriented firmware framework that could be reused for different instruments. With this project, we hoped
to use object-oriented technology to address reuse through framework reuse. We chose to use Fusion,1,2 an object-oriented
analysis and design methodology developed at HP Laboratories, to develop our instrument framework.

In this article, we first describe the firmware framework and our use of the Fusion process. Next we present our additions to
the analysis phase of the Fusion process, such as object identification and hierarchical decomposition. A discussion of the
modifications to the design phase of Fusion then follows, including such topics as threads and patterns. We conclude with
the lessons we learned using Fusion.

Firmware Framework

The new firmware framework is an application framework. An application framework provides the environment in which a
collection of objects collaborate. The framework provides the infrastructure by defining the interface of the abstract classes,
the interactions among the objects, and some instantiable components. A software component, or simply a component, is an
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atomic collection of source code used to achieve a function. In many situations, a component will have a one-to-one
correspondence with a C++ object. At other times, a component may be made up of multiple objects implemented in C++
or C source code.

Users of the firmware framework contribute their own customized versions of the derived classes for their specific
applications. Note that the framework approach is very different from the traditional library approach. With the library
approach, the reusable components are the library routines, and users generate the code that invoke these routines. With the
framework approach, the reusable artifacts are the abstractions. It is their relationships to one another, together with the
components, that make up the solution to the problem.

The firmware framework contains a number of application objects. These are different kinds of applications that handle
different kinds of responsibilities. The responsibilities of these application objects are well-defined and focused. For
example, there is a spectrum analyzer application that handles the measurement aspects of an instrument and also generates
data, a display application that is responsible for formatting display data, and a file system application that knows how to
format data for the file system.

There is always a root application in the system, which is responsible for creating and destroying other applications and
directing inputs to them. Other components of the application framework include the instrument network layer and the
hardware layer. The applications communicate with each other via the instrument network layer. The hardware layer
contains the hardware device driver objects, which the applications use through a hardware resource manager. Fig. 1 shows
an overview of the firmware framework.
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Fig. 1. An overview of the new firmware framework.

Application Layers
An application in the firmware framework is a collection of objects organized into three layers: client interface,
measurement results, and fundamental information. These layers deal with information at different levels of semantics.
The semantics at the client interface layer deal with instrument functionality while the semantics at the fundamental
information layer are more related to areas such as hardware control.

Client Interface Layer. This layer represents an abstraction containing user-selectable parameters, the interface for setting
these parameters, the results, and the sequence for generating the results. Thus, the client interface layer defines the
features and the capabilities of an application. It is responsible for maintaining application state information and creating
the requested results. This layer also contains a collection of application parameter objects that store the state of the
application, and a dependency manager that manages the parameter limiting and coupling dependencies. The dependency
manager also triggers events on state changes. These state changes cause the selection of the correct MeasurementResult to
use to satisfy the user’s request.

Take, for example, a simplified multimeter instrument. It could be an ohmmeter, a voltmeter, or a current meter. To select
the voltmeter mode, the instrument software must deselect the ohmmeter or current meter mode and then select the
voltmeter mode. The user interface simply turns on voltmeter mode. The dependency manager knows that these three
modes are mutually exclusive and automatically sets the current meter and ohmmeter modes to off. In addition, the user
could set the measured voltage to be the average value or the rms (root mean square) value. This corresponds to the
selection of a specific MeasurementResult that provides the information the customer is interested in.

Measurement Result Layer. This layer is made up of objects derived from a base class called MeasurementResult. These objects
contain the measurement algorithms that specify the methods for combining raw data into meaningful data.

MeasurementResult objects subscribe to and respond to events in the client interface layer and in other MeasurementResult
objects. Complex measurement results contain simple MeasurementResult objects. Examples of MeasurementResult objects in an
instrument application are SweepMR, MarkerMR, and LimitLineMR. These could be be measured values from a spectrum analyzer.
An example of a MeasurementResult object in a display application could be a TraceDisplayItem that knows how to read a MarkerMR
and generate marker information for the display.
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The measurement result layer has no knowledge of how or where its input data is generated. Its input can come either from
other MeasurementResults or from the fundamental information layer. It is thus free of any hardware dependencies. This layer
uses the fundamental information layer to coordinate the hardware activity.

Fundamental Information Layer. This layer performs the specific activities that orchestrate the hardware components
to achieve a desired result. The objects in the fundamental information layer know about specific hardware capabilities.
They keep the hardware objects isolated from each other and also generate self-describing, hardware-independent data. The
fundamental information layer applies hardware corrections (e.g., compensations for hardware nonlinearities) to the
measured results.

The fundamental information layer contains three major components: a state machine with sequencing information that
controls the objects in the layer, a production object that is responsible for orchestrating the hardware components, and a
result object that is responsible for postprocessing data. Examples of fundamental information layer objects include SweepFI,
which is responsible for measuring frequency spectra in a spectrum analyzer application, and the display list interpreter in
the display application, which is responsible for controlling the instrument display.

Instrument Network
The instrument network contains the objects that facilitate interapplication communication, including an ApplicationArchive
object, which is responsible for naming and providing information to applications, and an ApplicationScheduler object that
schedules the threads that make up the applications.

Hardware Layer
The hardware layer contains the objects that control the instrument hardware. These objects contain very little context
information. There are two types of hardware objects: device objects, which drive a simple piece of hardware, and assembly
objects, which are collections of hardware objects. Hardware components are organized in a hierarchy much like the
composite pattern found in design patterns.* Hardware objects are accessed through handles like the proxy pattern
described in the patterns book.3  Handles can have either read permission or read-write permission. Read permission means
that the client can retrieve data from the object but is not able to change any of the parameters or issue commands.
Read-write permission allows both. Permissions are controlled through the hardware resource manager.

Communication Mechanisms
Two main communication mechanisms glue the architecture together: agents and events. Agents translate the language of
the user (client) into the language of the server (application). Different kinds of agents apply different kinds of translations.
For instance, a client may enter information in the form of a text string, while its target application may expect a C++
method invocation. Thus, the client would use a specialized agent to translate the input information into messages for the
target application (the server).

Events are mechanisms used to notify subscribers (objects that want to be notified about a particular event) about state
changes. We decided to use events because we wanted to have third-party notification, meaning that we did not want the
publishers (objects that cause an event) to have to know about the subscribers.

There are two types of events: active and passive. Active events poll the subject, whereas passive events wait for the subject
to initiate the action. Our event mechanisms and the concepts of subscribers and publishers are described in more detail
later in this paper.

Use of Fusion

In selecting an object-oriented method to guide our development, we were looking for a method that would be easy to learn
and lightweight, and would not add too much overhead to our existing development process. We were a newly formed team
with experience in our problem domain and in embedded software development, but little experience in object-oriented
design. We wanted to minimize the time and resources invested in working with and learning the new technology until we
were fairly certain that it would work for us. At the same time, we wanted to have a formal process for designing our system,
rather than approach the problem in an ad hoc manner.

Fusion (Fig. 2) met these requirements. It is a second-generation object-oriented methodology that is fairly lightweight and
easy to use.4

For the most part, our use of Fusion was very straightforward. We started with the system requirements, and then generated
a draft of the system object model and the system operations of the interface model. We also generated data dictionary
entries that defined our objects and their interrelationships. These documents made up the analysis documents. We did not
develop the life cycle model because we did not see how it contributed to our understanding of the system. As time went on,
we discovered that we really did not need it.

* Design patterns are based on the concept that there are certain repeated problems in software engineering that appear at the component interaction
level. Design patterns are described in more detail later in this article.
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Fig. 2. The Fusion process for software development.

From the analysis model, we mapped the analysis onto a design and generated the object interaction graphs to show the
interactions between the objects. We then generated the visibility graphs and derived the class descriptions. These were
straightforward processes.

By no means did we go through this entire process in one pass. For us, using Fusion was an iterative process. Our system
was clearly too large to analyze and design in one pass. If we had tried, we would have been overwhelmed with the details.
Instead, we made a first pass to identify the primary objects. We then divided the system into subsystems and recursively
applied the Fusion method to each subsystem level to discover the higher-order objects at that level.

For instance, at the topmost level we identified the major components of the firmware framework: the client interface layer,
the measurement result layer, and the fundamental information layer (see Fig. 3). We then sketched out the interactions
between these components, repeated the process for each of the subsystems, and explored the details within each of the
components of the subsystems.

We did not apply the iterative process simply to find details. It was also a way to check the top-level analysis and design and
feed back into the process anything that we had overlooked in the higher-level passes. These checks helped to make our
system implementable. Through external project reviews with object-oriented experts, we also discovered other ways to
look at our abstractions. For instance, with our original analysis, our focus was on the subsystem that performed the
measurement functionalities of the instruments. Thus, we ended up with an architecture that was focused on measurement.
We had layers in the system that handled the different aspects of obtaining a measurement, but few layers that supported the
instrument firmware. It was not until later, with outside help, that we saw how the patterns and rules for decomposing the
instrument functionality into layers applied equally well to subsystems that were not measurement related, such as the
display or the file system. We were also able to abstract the different functionalities into the concept of an application and
use the same rules and patterns to decide how the responsibilities within an application ought to be distributed.

We found Fusion to be an easy-to-use and useful methodology. This method provided a clear separation between the analysis
and the design phases, so that we were able to generate system analyses that were not linked to implementation details.



Article 10 February 1997 Hewlett-Packard Journal      5

Application

Measurement Results (MR)

Hardware

Uses

Uses

Fundamental Information (FI)

CalSource

Production Response

Parameter

Dependency Manager

Client Interface (CI) Layer

Fig. 3. The object model for the client interface, measurement results, and fundamental information objects.

Of course, no methodology is perfect for every situation. We made some minor modifications to the method along the way,
as well as some extensions (see Fig. 2), which will be described later. For instance, we omitted the life cycle models. Since
we knew that we were going to implement our system in C++, we used C++ syntax to label our messages in the object
graphs and C++ class declarations when we generated the C++ classes. We also did not use the state diagram portions of
Fusion to generate states for our state machines. We felt that we did not need this state machine facility and thus freed the
staff from having to learn yet another notation.

Extensions to Fusion—Analysis Phase

In our desire to perform object analysis more consistently, our team developed extensions to Fusion that helped non-object-
oriented practitioners make the paradigm shift to the object-oriented mind-set much more easily.

Many developers and managers naively assume that a one-week class on object-oriented technology is sufficient to launch a
team into developing object-oriented software. While this may be a necessary condition, it is not sufficient for the successful
acquisition and application of object-oriented technology.

Many texts and courses on object-oriented methods treat the analysis phase as merely the identification of nouns that are
objects and their relationships with one another. Having conveyed this, the analysis sections of these books then focus on
method notation rather than helping the novice overcome the biggest obstacle in object-oriented analysis, the identification
of objects.

Without sufficient help, novices produce analysis diagrams that conform to the object notation, but merely recast ideas from
either the structured analysis paradigm or from some home-grown paradigm. The circles of structured analysis and design
are turned into boxes and, voila, an object diagram is born.

Our team was not spared this experience. Fortunately, we consulted object-oriented experts who taught us what to do. Thus,
we developed an analysis technique that could be consistently applied project-wide to help the developers transition from
structured to object-oriented analysis. This was critical to our facilitating software reuse, the primary goal of the project.

Object Identification
Successful object-oriented analysis begins with identifying a model that captures the essence of the system being created.
This model is made up of behaviors and attributes that are abstractions of what is contained in the system to accomplish its
task.

What makes a good abstraction? The answer to this question is critical to the effective use of object-oriented technology.
Unfortunately, identifying the wrong abstraction encourages a process known as “garbage in, garbage out.” Furthermore, the
right abstraction is critical to the ease with which a developer can implement the object model. It is possible to generate a
proper object model that cannot be implemented. The key is in the choice of the abstraction.
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What makes an abstraction reusable? The answer to this question is critical to achieving the value-added feature of
object-oriented technology that is needed to achieve software reuse. Understanding the context in which reuse can occur is
important.

An analysis framework exists that can be used to guide the identification of abstractions. This framework has the added
benefit of guaranteeing that the resultant object model derived from its use is realizable. Furthermore, its foundation is
based on the premise that software reuse is the ultimate goal.

In developing our analysis, we noted the questions the experts would ask when presented with our work. Fundamentally,
their questions focused on understanding the responsibilities of the abstractions that we had identified. Responsibility, it
turns out, gives rise to the state and behavior of an object. Previous research on this topic yielded an article5 that discusses
responsibility-based design, and describes an object-oriented design method that takes a responsibility-driven approach. We
synthesized this knowledge into what can be described as responsibility-based analysis.

This new analysis technique is based on a pattern of three interacting abstractions: the client, the policy, and the
mechanism. Fig. 4 illustrates the object model for the client-policy-mechanism framework.

Client
Requests
Services Policy Uses Mechanism

Initiates Request
to Change State

Executes
Request

Decides How to
Process Request

Fig. 4. The object model for the client-policy-mechanism framework.

The client abstraction requests services, initiates activities that change the system state, and queries for request-specific
status within the system.

The policy abstraction decides when and how a request will be acted upon. It accepts the client request and, based on the
responsibility given to it by the analyst, chooses the appropriate way in which the work will be done. In performing this
responsibility it sets the context for the relationships between the system components.

The mechanism abstraction actually performs the change to the system state. If the operation is a state query, it returns
the desired information. It does not return context information related to the operation being discussed. The mechanism
abstraction makes no decision as to whether it is appropriate for it to perform an operation. It just does it.

As an example, consider creating a software application to read the current market value of HP stock. The client-policy-
mechanism analysis of the problem, at a very high level, yields at the minimum three abstractions: an abstraction
representing the user (the client), an abstraction that represents when and how the HP stock information is to be acquired
(the policy), and lastly, an abstraction that knows about the value of HP stock (the mechanism). The mechanism abstraction,
when implemented, becomes the software driver for acquiring the stock price. In one instance, the mechanism object reads
the value of HP stock from a server on the Internet via telnet. In another instance, the mechanism acquires the stock value
via http. (Telnet and http are two internet communication protocols.) The policy abstraction determines how often to access
the mechanism. In our case it determined how often, that is, the time interval used, to poll the mechanism. The client object
receives the resultant information.

From a software reuse perspective, mechanism abstractions are the most reusable components in a system. Mechanisms
tend to be drivers, that is, the components that do the work. Since the responsibility of a mechanism is context-free, the
work that it does has a high probability of reuse in other contexts. Being context-free means that it does not know about the
conditions required for it to perform its task. It simply acts on the message to perform its task. In the example above, the
mechanism for acquiring the stock price can be used in any application requiring knowledge of the HP stock price.

Though not as obvious, using the client-policy-mechanism framework gives rise to policy abstractions that are reusable. In
the example above, the policy abstraction identified can be reused by other applications that require that a mechanism be
polled at specific time intervals. Making this happen, however, is more difficult because the implementer must craft the
policy abstractions with reuse in mind.

The analysis technique described above attempts to identify  client, policy, mechanism, and the contexts in which they
exhibit their assigned behaviors. When policy roles are trivial, they are merged into the client role, producing the familiar
client/server model. This reduction is counterintuitive, since most client/server model implementations imbed policy in the
server. However, from a software reuse point of view, it is important to keep the server a pure mechanism. On the other
hand, it is also important to resist the temptation to reduce the analysis to a client/server relationship. Doing so reduces both
the quality of the abstractions and the opportunity for reusing policy abstractions.
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These three abstractions together define the context of the problem space. Experience has shown that to produce a clean
architecture, it is important for each abstraction to have one responsibility per context. That is, a policy abstraction should
be responsible for only one policy, and a mechanism abstraction should be responsible for doing only one thing.

On the other hand, abstractions can play multiple roles. In one context an abstraction may play the role of mechanism and in
another context be responsible for policy. An example illustrates this point more clearly. Consider the roles in a family unit.
A young child performs requests made by a parent who in turn may have been asked by a grandparent for a specific activity.
In a different context, for example, when the child grows up, it plays the role of parent for its children and its parents, who
are now grandparents. In this latter setting, the parents are the policy makers, the grandparents are the clients, and the
children (of the child now grown up) are the mechanisms (see Fig. 5).

MechanismPolicyClient

Client Policy Mechanism

Context: Young Child

Context: Child as Parent

Child’s Grandparent

Child’s Parent

Child

Child’s
Child

Fig. 5. The client-policy-mechanism model as applied to a family unit.

Just as, depending on context, a specific individual plays different roles, so it is true with abstractions. In one 
context an abstraction may be a mechanism and in another, a policy. The critical rule to keep in mind when using the
client-policy-mechanism framework is that there should only be one responsibility per abstraction role.

Hierarchical Decomposition
Another example of systems that illustrate the single-role- per-context rule is found in the hierarchy of the military forces.
In the United States, the commander in chief issues a command, the joint chiefs respond to the command and determine the
methods and the timing for executing the command, and the military forces complete the task. In a different context, the
joint chiefs may act as clients to the admiral of the navy who determines the methods and timing for the subordinates who
execute the task (see Fig. 6).
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Fig. 6. The client-policy-mechanism model as applied to a military hierarchy.
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In each of these examples there is a client, a policy, and a mechanism. In one context, a person is responsible for policy
decisions. In another, the same person is responsible for mechanism or client activities. It is this concept that gives rise to
the use of the client-policy-mechanism framework in helping to perform hierarchical decomposition of a problem domain.
The repetitive identification of roles, contexts, and responsibilities at ever finer levels of granularity helps identify the
solution space for the problem domain.

The firmware framework team performed hierarchical decomposition by identifying roles, contexts, and responsibilities.
These responsibilities defined abstractions that produced objects and groups of objects during the implementation phase. In
the early phases of our novice object-oriented project, it was expedient to use the words object and abstraction
interchangeably. As the team gained experience and became comfortable with object-oriented technology and its
implementation, the distinction between the abstraction and its resulting objects became much better appreciated.

The analysis technique based on the client-policy-mechanism framework resulted in a hierarchical decomposition that
yielded layers and objects as shown in Fig. 7. Layers are groups of objects that interact with one another to perform a
specific responsibility. Layers have no interfaces. Their main function is to hold together objects by responsibility during
analysis to facilitate system generation. For example, many software systems include a user interface abstraction. However,
upon problem decomposition, the user interface abstraction typically decomposes into groups of objects that collaborate
and use one another to satisfy the responsibilities of the user interface. When the abstraction is implemented, it usually does
not produce a single user interface object with one unique interface.

Interface
Object Object Object Object

Abstraction

Hierarchial
Decomposition

Layer Object

Instantiable Abstraction
Noninstantiable Abstraction

Fig. 7. An abstraction decomposition.

Much of this may not be discovered or decided until the design phase. However, knowing about it in the analysis phase
maximizes the identification of abstractions and the completion of the analysis.

Creation Model
Many times discussions about abstractions resulted in intangibles that were difficult to grasp. To alleviate this problem, the
team supplemented Fusion with a dependency model showing object dependencies and indicating when objects should be
created. This provided developers with a concrete picture of which objects needed to be available first.

Consider again the HP stock price application. Let the mechanism object be represented by object A and let the policy object
be represented by object B. Fig. 8 represents a creation model for the objects under discussion. It shows that object A has to
be created before object B. This means that the mechanism for acquiring the HP stock price is created first. The object that
determines how often to acquire HP stock price can only be created after object A. This example creation model is one of
several that were discussed during the analysis phase to clarify the roles of the abstractions.

Information Dependency
(Implies that B Is Dependent on A)

Creation
Order

1.

2.

A

B

Fig. 8. A creation model.
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Extensions to Fusion—Design Phase

We made extensions to the Fusion process with threads, design patterns, and reuse.

Threads
Our most extensive modifications to Fusion in the design phase were in the area of threads. Our real-time instrument
firmware systems, which are very complex, must deal with asynchronous events that interrupt the system as well as send
control commands to the measurement hardware. For example, measurement data from the analog-to-digital converter must
be read within a certain time period before it disappears, and there may also be measurement hardware that needs to be
adjusted based on these dynamic data readings.

There are also many activities going on in the system that may or may not be related. For example, we may want to have a
continuous measurement running at the same time that we run some small routine periodically to keep the measurement
hardware calibrated. Traditionally, a monolithic code construct performs all of these tasks. However, since some of these
activities may only be peripherally related, it makes more sense to place these tasks in different threads of execution.
Each thread of execution can be thought of as a path through the code. These threads of execution may be either regular
processes or lightweight processes, and they may or may not share resources. In this paper, the term thread is used to mean
a thread of execution, not necessarily to denote the preference of a lightweight process over a regular one. For instance, it
would make sense to keep the task that performs the measurements separate from the task that checks the front panel for
user input.

Fusion provides us with information on how to divide the behavior of the system into objects, but Fusion does not address
the needs of our real-time multitasking system. It does not address how the system of objects can be mapped into different
threads of execution, nor does it address the issues of interprocess communication with messages or semaphores. Lastly, no
notation in Fusion can be used to denote the threading issues in the design documents.

Thread Factoring
We extended Fusion thread support in two ways. First, in the area of design we tried to determine how to break the system
into different threads of execution or tasks. Second, in the area of notations we wanted to be able to be able to denote these
thread design decisions in the design documents.

Our main emphasis was on keeping these extensions lightweight and easy to learn and keeping our modifications to the
minimum needed to do the job. We wanted a simple system that would be easy to learn, rather than a powerful one that only
a few people could understand.

We adopted portions of Buhr and Casselman’s work on time-thread maps to deal with thread design issues such as the
identification and discovery of threads of control within the system.6,7,8 In our design, a time-thread map is essentially a
collection of paths that are superimposed on a system object model (see Fig. 9). These paths represent a sequence of
responsibilities to be performed throughout the system. These responsibility sequences are above the level of actual data or
control flows, allowing us to focus on the responsibility flow without getting involved in the details of how the exact control
flow takes place. We then applied the process of thread factoring, as described by Buhr and Casselman, where we brought
our domain knowledge to bear on decomposing a single responsibility path into multiple paths. These paths were then
mapped into threads of execution throughout our system.

SweepMR

SweepFI

Hardware

MarkerMR Display Item

Display List
Interpreter

Display
Hardware

Thread Start

Thread End

Fig. 9. An example of a time-thread map.
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With the Fusion method, we had already identified the areas of responsibility. We then used this thread heuristic at the
beginning of our design phase in those places where we had already identified the objects in the system, but where we had
not yet designed the interaction among the objects. We dealt with the concurrency issues at the same time that we dealt with
the object interaction graphs shown in Fig. 10. We also performed thread factoring and divided the system into multiple
threads.

sweepmr:MR sweepfi:FI

lo:HW

if:HW

adc:HW

do_it()

receive(...)

A1 go(...)

B1.4

B1.1

B1.2

B1.3alarm()

set(...)

C1.3.1

set(...)

set(...)0

Fig. 10. An object interaction graph (OIG). This representation is an extension of a Fusion object interaction graph.

The letters in front of the OIG numbers associate a thread of execution with a particular message.

Message and OIG Number

The thread map in Fig. 11 depicts an example of thread factoring an application in our system. Using Fusion, we identified
a path of responsibility through the objects CI, MR, and FI (client interface, measurement results, and fundamental
information). Inputs enter the system through CI, and the responsibility for handling the input goes through the various
layers of abstraction of MR and FI. Since information from the measurement hardware enters the system through FI, FI may
have to wait for information. The information then flows goes back up fundamental information to MR and then possibly to
other applications.

Hardware Hardware

CI CI

MR

FI FI

(a) (b)

Synchronization
Points

Fig. 11. A thread map showing an example of thread factoring. (a) Before factoring. (b) After factoring.

MR

CI
MR
FI

Client Interface
Measurement Results
Fundamental Information

Clearly, the system worked fine as it was. However, we wanted to find where we could break the thread of execution and
perform thread factoring. Many issues, such as questions about performance, were raised at this point. For example, if the
thread is executing in part A of the system, it may not be available to perform services in part B of the system. Thus, in our
system, we could have a thread pick up a user request to change the measurement hardware settings and then traverse the
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code in the hardware setup routines to perform the hardware adjustments. However, while it was doing so, the thread would
not be available to respond to user requests. This might impact the rate at which the system was able to service these
requests. Therefore, we broke the user thread at the CI object boundary and gave that layer its own thread.

Next, we tried to find a place where we could break the thread that goes through MR and FI. Clearly, the place to break was
between MR and FI. Making the break at this point gave us several flexibilities. First, we would be able to wait at the FI
thread for data and not have to be concerned with starving MR. Second, developing components that were all active objects
allowed us to mix and match components much more easily.

Mapping a system onto threads is a design-time activity. Thinking about the thread mapping at this stage allowed us to
consider concurrency and the behavioral issues at the same time.

Thread Priorities
After we had identified the threads of execution, we needed to assign priorities to the threads. Note that this is mostly a
uniprocessor issue, since priorities only provide hints to the operating system as to how to allocate CPU resources among
threads.

In the firmware framework project, we took a problem decomposition approach. We reduced the architecture of our system
to a pipeline of simple consumer/producer patterns (see Fig. 12). At the data source we modeled the analog-to-digital
converter (ADC) interrupts as a thread producer generating data that entered the system with FI as consumer. FI, in turn,
served as the producer to MR, and so forth. Inputs may also enter the system at the user input level via either the front panel
or a remote device.

Fundamental
Information

Measurement
Results

Measurement
Hardware Display Item

Display List
Interpreter

Display
Hardware

Producer Consumer Producer

Producer Consumer

Consumer

ConsumerProducer

Spectrum Analyzer Application Display Application

ConsumerProducer

Fig. 12. An example showing some of the producer/consumer chains used in the firmware framework project.

We decided to give the highest priority to those threads that introduced data into the system from the physical environment
so that they could respond to events in the environment quickly. Those threads included the user input threads and the ADC
interrupt thread.

For thread priorities in the rest of the system, we considered three possibilities: that the producer priority was higher than
that of the consumer, that the two priorities were equal, or that the consumer priority was higher than the producer priority.
We ruled out setting the priorities to be equal because that would be equivalent to having no policy and would just let the
systems run without any direction.

Making the producer priority higher than that of the consumer made sure that data was generated as quickly as possible.
Unfortunately, since we continuously acquired data in our system, our data generation could go on forever unless we
explicitly stopped the process and handed control to the higher level.

Alternatively, if we gave the consumer thread the higher priority, it would have priority over the producers with regard to
CPU time. However, without the data generated from the producers, the consumers would block and be unable to run. Thus,
if the data consuming chain had a higher priority than the data producers, the threads would run when data was available for
them to process. This eliminated the necessity for the consumers to give up the CPU explicitly.

Threads and Synchronization
Another thread issue we considered was how to present the thread communication and synchronization operating system
primitives to our system. We saw two alternatives. We could either expose the system level operating system calls to the
system or encapsulate the operating system primitives inside objects so that the rest of the objects in the system could talk
to these objects. For other system objects, it would be like communicating with nonoperating system objects.

We chose the latter approach. We created operating system objects such as tasks and semaphores to encapsulate operating
system functionalities. This approach allowed us to model the operating system primitives as objects so that they would fit
in well with the Fusion process and give us a clean model and good code reuse. This approach also had the side affect of
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isolating our system from the operating system API. There were drawbacks with this approach, but they were not major.
Reference 7 contains more details about both of these approaches.

Thread Notation
We used thread notations within our Fusion diagrams in two ways. First, we used the thread map notations to show sketches
of thread flows (Fig. 11). These simple notations gave us a general idea of the thread activities in the system. We adopted
only a few of the notations that Buhr and Casselman use, employing the paths and waiting places that show the behavior of
the system. We did not use their notation to handle the different types of synchronizations because we did not feel that this
was the level of detail appropriate for what we needed. This method gave us an overview of what the system looked like
without bogging us down in the details of how communication and synchronization were implemented.

For our second method of using thread notations, we extended the Fusion object interaction graph (OIG) notations to
describe threads more formally (Fig. 10). We added letters in front of the OIG numbers to associate a thread of execution
with a particular message. We also experimented with coloring the threads.

Design Patterns
Design patterns have become popular in the object-oriented world only recently. Design patterns evolved from the
realization that certain software engineering patterns are repeated. These patterns are not at the implementation level, but at
the level of component interactions. The idea here is to look at software design problems at a higher level so that recurring
patterns can be identified and a common solution applied.

For instance, there is often a need in software systems for one or more objects to be notified if the state changes in another
object. For example, if the value in a database changes, the spreadsheet and the word processor currently displaying that
value need to change their displays. The observer pattern, described in the design patterns book,3 shows how to set up the
relationship among these objects. It describes when a pattern may be appropriate for solving the notification problem and
some implementation hints and potential pitfalls.

Design patterns came to our attention a year or so into the project. By then, we had already completed most of the design.
Therefore, we did not use them as templates to build the system from scratch. Instead, we used the design pattern catalog
to validate designs. In looking through our system, we found potential applications for over half the patterns in the design
patterns book. We then compared our design with those patterns.

We found patterns to be useful for design validation. In some places, they helped us improve the design. For instance, the
hardware components are accessed through hardware handles, which are very similar to the protection proxies described
in the patterns book. The hardware architecture itself is an example of a composite pattern. A composite pattern is an
organization of objects in which the objects are arranged in a tree-like hierarchy in which a client can use the same
mechanism to access either one object or a collection of objects. The descriptions of composite patterns in the design
patterns book also helped us to identify and clarify some of the issues related to building composites.

In other areas in the system, we found our analysis to be more detailed because of our extensions to identify objects using
the client-policy-mechanism framework. We have an event mechanism in the system to inform some component when an
action has occurred. This mechanism is very similar to that of the observer pattern mentioned earlier. The observer pattern
describes two components: a publisher and a subscriber, which define a methodology for handling events.

Our event pattern is slightly more sophisticated. We placed the event policies into a third object, so we have three
components in our event pattern: a subscriber, an actor (publisher), and the event itself. Actors perform actions, and
subscribers want to know when one or more actors have performed some action. The subscriber may want to be notified
only when all of the actors have completed their actions. Thus, we encapsulated policies for client notification into the event
objects. An actor is only responsible for telling events that it has performed some action. Events maintain the policy that
determine when to notify a subscriber.

This arrangement gives more flexibility to the system because the design-patterns approach allows the policy for notification
to be embedded in the actor. In our case, we also have the freedom to customize the policy for different instances of the
same actor under different situations.

We feel that the main advantage of not using the patterns until the system design is done is that the developer will not fall
into the trap of forcing a pattern that resembles the problem domain into the solution. Comparing our problem domain with
those described in the patterns book helped us to understand more about our context and gave us a better understanding of
our system. Also, as many other object-oriented practitioners have reported, we also found patterns to be a good way to talk
about component interaction design. We were able to exchange design ideas within the team in a few words rather than
having to explain the same details over and over again.

Scenarios
Part of our system requirements included developing scenarios describing the behavior of the system. Scenarios describe the
system output behavior given a certain input. These scenarios are similar to the use cases described in reference 1 and are
part of the Fusion analysis phase. However, for people not conversant in object-oriented methods, these scenarios often do
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not have much meaning because the descriptions are far above the implementation level. Whenever we presented our
analysis and design models, our colleagues consistently asked for details on what was happening in the system at the design
level. Although Fusion documents provided good overviews of the system as well as excellent dynamic models for what
happened in each subsystem, people still wanted to see the dynamics of the entire system.

To explain how our system works, we developed scenarios during the design phase. These scenarios were a collection of
object interaction graphs placed together to show how the system would work, not at an architectural level but at a design
and implementation level. We used the feedback we received from presenting the scenarios to iterate the design.

The Fusion model is event-driven, in that an event enters the system and causes a number of interactions to occur. However
we had a real-time system in which events happen asynchronously. We needed scenarios that were richer than what the
object interaction graph syntax could provide.

For example, our instrument user interface allows the user to modify a selected parameter simply by turning a knob, called
the RPG (rotary pulse generator). One attribute by which our customers judge the speed of our instruments is  how quickly
the system responds to RPG input. The user expects to get real-time visual feedback from the graphics display. The empirical
data suggests that real-time means at least 24 updates per second. As the layers were integrated, we looked at the scenario
in which the user wanted to tune the instrument by changing a parameter (e.g., center frequency). This scenario led to
questions such as: How would the system’s layers behave? What objects were involved? What were the key interfaces
being exercised? Were the interfaces sufficient? Could the interfaces sustain the rate of change being requested? What
performance would each of the layers need to deliver to achieve a real-time response from the user’s point of view? The
answer to these questions led to a refinement of both the design and the implementation.

These design-level scenarios provided a better idea of what would happen in the system and presented a more dynamic
picture. Since the scenarios encompassed the entire system, they gave the readers a better view of system behavior. We
found them to be good teaching tools for people seeking to understand the system.

We also found that instance diagrams of the system objects helped us to visualize the system behavior. A diagram of the
instantiated objects in the system provided a picture of the state information that exists in the system at run time.

Reuse
To build reuse into a system, the development method has to support and make explicit the opportunities for reuse. The
analysis extensions described earlier serve to facilitate the discussion of reuse potential in the system. The design is driven
by the biases encoded into the analysis.

At the end of the first analysis and design pass, an entity relationship diagram will exist and a rudimentary class hierarchy
will be known. The more mature the team in both object-oriented technology and the domain, the earlier the class hierarchy
will be identified in the development method. Additional information can be gathered about the level of reuse in the class
hierarchy during the analysis and design phase. These levels of reuse are:

� Interface reuse

� Partial implementation reuse

� Complete implementation reuse.

The ability to note the level of reuse in the work products of the development method is valuable to the users of the object
model. A technique developed in this project was to color code the object model. Fig. 13 shows two of these classes.

Except for defect fixes, complete implementation classes cannot be modified once they are implemented. This type of color
coding aids developers to know which components of the system can be directly reused just by looking at the object model.

Process Definition

The pursuit of object-oriented technology by a team necessitates the adoption of formal processes to establish a minimum
standard for development work. This is especially true if the team is new to object-oriented technology. Various members of
the team will develop their understanding of the technology at different rates. The adoption of standards enables continuous
improvements to the process while shortening the learn time for the whole team.

In the firmware framework project, we adopted processes to address issues like communication, quality, and schedule. We
customized processes like inspections and evolutionary delivery to meet our needs. It is important to keep in mind that
processes described in the literature as good practices need to be evaluated and customized to fit the goals of a particular
team. The return on investment has to be obvious and the startup time short for the process to have any positive impact on
the project.

Coding standards, for example, can help the team learn a new language quickly. They can also be used to filter out
programming practices that put the source code at risk during the maintenance phase of the project. They also facilitate
the establishment of what to expect when reading source code.
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Fig. 13. An example of an object model of the hardware layer that

is coded to show the reuse status of the various objects.

Evolutionary Delivery
We partnered with HP’s Software Initiative program to develop what is now known as EVO Fusion.9,10 EVO is a management
process that constructs a product in small increments. After each increment is completed, the development process is
examined for improvements that might contribute towards the successful completion of the next increment.

Each increment can have an analysis, design, code, and test phase. The product evolves over time into the desired product
through repeated execution of small development cycles that add greater and greater functionality. This process helps to
focus the team and increases the probability that schedules will be met.

Inspections
Much has been written about the value of inspections to software development. Though much of the literature focuses on
product quality, the inspection process also identifies (that is, makes explicit) other issues. Once identified, these issues can
be quantified into high, medium, and low   risk factors. Their impact on the success of the project can be ascertained and the
appropriate action can be taken to manage their resolution in a timely manner. Institution of an inspection process thus
provides the project manager and the project team with an additional means by which to gather information pertinent to
project completion.

In a project, the use of a development method like EVO Fusion, coupled with an inspection process, facilitates the
discussion of issues that relate to requirements, software architecture, software integration, and code development. The
benefits to the team are significant because these processes enable members to understand the product and its functionality
long before the debug phase begins.

Legacy Systems
In many cases, it is not possible to generate a system completely from scratch without using legacy code. The firmware
framework project was no exception.
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We found that the most straightforward approach is to encapsulate the legacy code inside objects. This works for systems
that provide services to client objects. It also works for legacy subsystems that act as clients, such as language parsers.
These parser components are not good framework citizens because they already have their own definition of the server
interface they expect, which may not coincide with the object-oriented design.

We feel that the proper approach is to perform the object-oriented analysis and design without regard for the legacy
system first, and then encapsulate the legacy code inside the proper objects. There is a strong temptation to design the
object-oriented system around the existing legacy code, but in our experience the legacy system may not have been designed
with the appropriate object-oriented principles. Thus, allowing it to affect the analysis may lead to a faulty design.

Summary
Fusion is the result of the evolution of a long line of software development processes. Like its predecessors, Fusion has
its benefits, problems, and areas for improvement.

Benefits. The benefits we derived using Fusion include:

� Lightweight and easy to use. We found Fusion to be easy to learn. There is lot of guidance in the process that
leads the user from step to step. It is not mechanical, but the user will not be wondering how to get from one
step to the next.

� Enforces a common vocabulary. Often in architecting systems, the different domain experts on the team will
have their own definitions of what certain terms mean. Generating data dictionary entries at the analysis phase
forces everyone to state their definitions and ensures that misunderstandings are cleared up before design and
implementation.

� Good documentation tool. We found that the documents generated from the Fusion process served as excellent
documentation tools. It is all too easy, without the rigor of a process, to jump right in and start coding and do
the documentation later. What often happens is that schedule pressure does not allow the engineer to go back
and document the design after the coding is done.

� Hides complexity. Fusion allows a project to denote areas of responsibility clearly. This feature enables the
team to talk about the bigger picture without being bogged down in the details.

� Good separation between analysis and design. Fusion enforces a separation between analysis and design and
helps in differentiating between architectural and implementation decisions.

� Visibility graphs very useful. The visibility graphs are very useful in thinking about the lifetime of the server
objects. Simply examining the code all too often gives one a static picture and one does not think about the
dynamic nature of the objects.

Problems. The problems we encountered with the Fusion method included:

� Thread support. Although the Fusion method models the system with a series of concurrent subsystems, this
approach does not always work. The threads section of this article describes our problems with thread
support.

� Complex details not handled well. This is a corollary to Fusion’s ability to hide details. Do not expect Fusion to
be able to handle every last detail in the system. In instrument control, there are a lot of complex data
generation algorithms and interactions. Although in theory it is possible to decompose the system into smaller
subsystems to capture the design, in practice there is a point of diminishing returns. It is not often feasible to
capture all the details of the design.

Areas for Improvement. The following are some of the areas in which the Fusion method could be improved:

� Concurrency support. We would like to see a process integrated with the current Fusion method to handle
asynchronous interactions, multitasking systems, and distributed systems.

� CASE support. We went through the Fusion process and generated our documentation on a variety of word
processing and drawing tools. It would have been very helpful to work with a mature CASE tool that
understands Fusion. Some of the functionalities needed in such a tool include: guidance for new Fusion users,
automatic generation of design documents, and automatic checking for inconsistencies in different parts of the
system. Throughout the course of our project we evaluated several Fusion CASE tools, but none were mature
enough to meet our needs.
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