Audit History and Time-Slice Archiving in
an Object DBMS for Laboratory
Databases

Development of an object database management system allows
rapid, convenient access to large historical data archives
generated from complex databases.

by Timothy P. Loomis

The requirements for laboratory databases include many of the same features specified for other types of databases,
including enforcement of a rigorous transaction model, support for concurrent users, distributed recovery capabilities,
performance, and security. However, the requirements differ from most databases by the emphasis on saving a complete and
recoverable record of historical data for some types of data. This requirement comes from the regulatory overseeing
authority of the pharmaceutical industry by organizations such as the U.S. Government’s Food and Drug Administration or
Environmental Protection Agency, and often, the legal importance of the data (patent law). Some examples of historical data
in a chemical laboratory include previous values of test results, designated reviewers and approvers of data, methods of
analysis, and ingredients used to produce a product. It is necessary to be able to determine when this data changed, who
changed it, and why a change was necessary.

Most laboratory database systems have tried to deal with historical data by adding complex logic to the application code to
record and retrieve historical data in special tables that are added to traditional relational database schemas. While this
technique works for simple schemas with a few objects that need to be monitored for change, its complexity overwhelms
development, testing, and support efforts for more realistic databases. In short, it does not scale to the complex databases
needed for the future.

Keeping track of historical data became a critical design factor when the HP ChemStudy product was being developed in the
laboratory information management system program in HP’s Chemical Analysis Solutions Division. HP ChemStudy controls
all the information used in multiyear projects that determine the expiration dates on drugs. The database is complex with
128 types of application objects interconnected through numerous relationships. It is necessary to be able to reproduce the
contents of objects and the state of their relationships at any time in the past to satisfy regulatory requirements.

Our solution to the historical data challenges of laboratory databases has been to develop a database management system
(DBMS) that provides built-in support for historical data for any object and for groups of objects that are connected through
relationships. The simplicity and extensibility of this system are possible because we have developed a pure object DBMS
(ODBMS) in which relationships are themselves objects. Although the ODBMS provides many advantages for applications
development, this article will concentrate on the issue of historical data.

The ODBMS is implemented in C++ on the HP-UX* operating system and Windows™ NT.

System Overview

Before considering the details of how historical data is managed in the database, we need an overview of the distributed
ODBMS to understand how an object is created and stored. While this modular system can be configured in many ways,
Fig. 1 presents an example configuration that is used in the HP ChemStudy product.

In Fig. 1, a client is a process that incorporates C++ class code that defines application objects. While the object created by
the application can contain any data needed in the application, the object is managed (locked, updated, saved) through the
services of the generic object manager module. The object manager also controls logical transactions (commit and rollback)
and provides save points and other DBMS functions. At the object manager level, all objects are treated alike and no changes
are required to support any new application object types. The client may have a user interface (shown as a graphical user
interface (GUI) in Fig. 1) or it could be an application server with code to support its own clients.

The object manager can connect to one or more object servers that control a database. The ability to connect to multiple
object servers makes the system a distributed DBMS and necessitates a two-phase commit protocol to ensure that a
transaction affecting multiple databases works correctly. The distributed capabilities of the ODBMS are employed for
archiving operations (described below) and for integrating data from multiple active databases.

Article 10 August 1997 Hewlett-Packard Journal 1



Client 1 Client 2

Graphical User Interface (GUI) Graphical User Interface (GUI)
Applicaton Classes Applicaton Classes

Object Manager Object Manager

Active Oracle Archive File
Object Server Object Server

Active Oracle Archive Oracle

Database ¢ Database
I A 4

v
-_— —_— — — K
Object Mapped Mapped Object Object
Tables Tables Tables Data Data

Fig. 1. Example ODBMS configuration.

Currently, we provide two types of object servers which differ only in the driver code module that stores object data. From
the point of view of a client process, there is no difference in the way an object is treated. The Oracle object server stores an
object in Oracle tables while the file object server stores the object in one or more redundant file structures as object data.
While the file version is faster than Oracle for read and write by a factor of 30 t0100, some customers prefer the Oracle
version because it conforms to their corporate information systems requirements. The file version also stores data more
compactly and is ideal for embedded databases that are not visible to users and for databases in which the speed of storing
and retrieving data is critical. Because the object data stored by either type of server is binary, multimedia data or a binary
file can be stored by breaking the data into objects. Objects are also useful for processing a large binary data file in clients
that do not have enough memory to hold all the data at once.

Laboratory databases become so large that it is necessary to remove old data periodically from the active database and place
it in some type of archive for long-term storage. Most systems have used a special storage medium for archived data and
require that the data be dearchived back to the active database for review. Instead, we use the distributed capabilities of the
ODBMS to transfer data from the active database to an archive database as a simple distributed database transaction. The
archive database can then be taken offline without limiting current operations. Fig. 1 shows an Oracle server being used for
the active database and a file version being used for an archive database.

The object database provides access for C++ object applications but lacks facilities for ad hoc queries and reports that can
be customized by a customer. To accommodate ad hoc queries and report writers, a collection of mapped tables can be
created that provide a more traditional relational database schema of the application data. Each type of C++ object can be
mapped to its own table in the map schema when it is inserted or updated, but it is always read by the application from the
object database. In practice, only some data in selected objects is mapped. This object-relational DBMS combination has
proven to be very successful at providing the customer with reporting flexibility, while preserving the speed and simplicity of
a pure object system for the application code.

An example of mapping is shown in Fig. 2. The example considers three objects of three different types: Dept, Emp and EmplList
(relationship). A client connected to the object server transports binary objects to and from the server cache. Except for
objects newly created by a client, all objects in the cache have persistent counterparts in the object database and are read
into the cache from this database. All objects are inserted or updated in the object database during the commit operation. At
the option of the application designer, selected data from an object can also be mapped to the map database as shown for
the Dept and Emp objects. The EmplList relationship object is not mapped in this example. Relationships are usually defined
using foreign keys in relational schemas.

We can see from this overview that an object is a bundle of data that can exist simultaneously as a C++ object in multiple
clients, as an object in the cache in the object server, as object data in a database, and as mapped data in a relational table.
Managing the relationships among these multiple representations of an object requires adherence to a rigorous transaction
model. Many of the features necessary to deal with historical versions of an object are extensions to controls that already
exist for object data.

Article 10 August 1997 Hewlett-Packard Journal 2



EmpList EmplList

Dept Dept

Emp S

DeptName Manager Location

EmpName EmpNum HireDate

Fig. 2. Object mapping example.

Auditing Laboratory Data

There is more to a database data item than a value that can be retrieved. For example, that value was created by someone or
some calculation, it may have been converted from a string representation with a specific precision, it was created at some
date and time, it may have some application-specified limits that cannot be exceeded, and so on. Moreover, the current value
may have replaced a previous value, requiring a justifying comment, and it may be necessary to retrieve all earlier values of
this data item. It has long been a requirement for laboratory databases to maintain this type of information associated with

a laboratory measurement and to record a history of changes to the measurement. We generally refer to the process of
maintaining a record of a value and its associated information through time as auditing or maintaining an audit trail. In the
context of an object database, auditing means keeping a record of the history of an object and objects associated with it
through relationships.

Auditing database data has generally meant keeping a separate record or audit log of selected changes made to the database.
For example, Oracle provides the capability to audit user, action, and date for access to selected object types but requires a
user to write triggers to record changes to data values. While this straightforward mechanism does accomplish the task, its
use for large and complex databases rapidly generates huge volumes of data that require sophisticated searching to identify
particular changes of interest. A simple audit log of database changes is practical only if one hopes that it will never be
needed! Audit logs are routinely needed in the pharmaceutical industry and will soon be a common requirement for other
industries subject to regulatory oversight, such as software development processes subject to ISO validation. Searching
through a huge audit log is not a reasonable way to answer an auditor’s questions about the history of an object that may
contain, or be associated with, hundreds of component objects.

The alternative to an external audit log is a DBMS that has an intrinsic method for auditing an object and its relationships. In
the next section we discuss general methods developed to audit selected classes of composite objects stored in an ODBMS
so that the audit data can be retrieved easily.

The subject of temporal databases has received considerable research attention directed mainly toward extending the
relational model and providing time-based query methods.»2 The implementation presented here differs from these models
principally by:

e Using an object model

e Using relationship objects together with lock-and-update propagation to synchronize the time history of related
objects, rather than attempting to deal with the more general problem of “joining” any set of objects

e Being a working implementation for audit-trail applications that deals with load errors and humerous practical
programming problems.

Article 10 August 1997 Hewlett-Packard Journal 3



Commercial extended relational databases such as Illustra® are beginning to provide some time-based capabilities for
specialized data.

Example Schema

Auditing an object is complicated by references to other objects. Consider Fig. 3, which shows an abbreviated class schema
for a division of a company containing departments, department offices, and employees within departments. Relationship
classes (objects) derived from the class list are shown explicitly in this diagram because they are important in auditing. (For
clarity all lists are shown as separate classes rather than as inherited base classes). A reference to another object is shown
explicitly as an arrow in this diagram because we will be concerned with the details of propagation of information between
objects. A line terminated with a dot (as in IDEF1X or OMT modeling)# indicates that references to multiple objects can be
stored. An A in the lower-right corner of a class indicates that objects in that class are audited.

References to Multiple Objects

= Reference to Another Object

> 4 @
[

= Audited Object

DeptList DeptOfficeList

Composite

Object E—— DeptOffice
Represents _ : .
Relationship EmpList AuditLogList
A A
Component :
Object AuditLog

A

Fig 3. Example class schema.

Composite Objects. Audited relationships should be used to contain the components of a composite object. A composite
object is one that can be considered to logically contain other component objects in the application. More precisely for our
purposes, a composite object can be defined as one that should be marked as changed (updated) if component objects are
added, deleted, or changed even if the data within the composite object itself remains unmodified.

In the example of Fig. 3, we will consider a Dept to be a composite object because it logically contains Emp component
objects. An EmpList object is the relationship or container connecting the composite and its components. We consider Dept to
be a composite object in this example because we implicitly include all the employees in the department as part of the
department and want to consider the department to be modified if there are any changes to any of the employees.
Alternatively, we could have considered Dept to exist independent of its employees. Clearly we can sink into the dark waters
of a long philosophical discussion here (If you change the engine in the car is it the same car?), so the design is best
approached physically. The basic question is whether examination of the history of a composite object should reflect
changes to its component objects. For many complex objects in our products the answer is yes.

Two references are necessary for an audited relationship. References traversed from Dept to Emp are called component
references and the reverse references are called back references.

Audited and Nonaudited Objects. As exemplified by the use of classes derived from the list class in audited and nonaudited
relationships, auditing can be specified on a subclass or an individual object. Moreover, it is permissible to turn auditing on
only after some event in the life of an object. For the moment, we consider only the case where an object in an audited class
is audited from inception.

Article 10 August 1997 Hewlett-Packard Journal 4



We see in Fig. 3 that objects of the composite Dept class should be audited from creation but that DeptOffice and Division are
never audited. Semantically, this design means that the history of a Dept object, including the composition of all of its
component Emps, can be retrieved at any stage of its history. In contrast, the DeptOffice for the Dept and the list of Depts in the
Division can be retrieved only for their current values.

Audit Mechanism

Auditing Objects. Auditing an object means that all images of the object must be maintained in the database, starting with the
image that existed when auditing was turned on. In contrast, only the latest (current) image of a nonaudited object is
retained. Note that when an audited object is to be written to the database, the decision to replace the old image depends on
whether the old one was audited. Successive object images generated through update will be referred to as revisions of the
object, whether the object is audited or not. The revision number is used by the ODBMS to ensure that a client is working
with the correct image of an object. There can be only one current revision of an object and only the current revision can be
updated.

The term version is used for the concept of distinguishing variations of an object that can all be current. For example,
different versions of a glossary can exist for different languages but each version may undergo revision to add terms or
correct errors. An object is also marked with a commit timestamp, which is exactly the same for all objects in a (possibly
distributed) transaction. These attributes of an object, along with its identifier and other data, are contained in a header that
is prepended to the object in the database and maintained separately by the C++ object in the client object manager.

Auditing Relationships. Auditing relationships requires some mechanism for recording the history of the relationship. Rather
than implement a database relationship mechanism and audit it separately from auditing objects, it makes sense to
implement relationships as objects themselves. Auditing a relationship is then no different than auditing an object.

Deleting Audited Objects. Deleting an object becomes complicated when the object is audited because the object still exists in
the database until the delete is committed. The delete action must be represented in the database somehow, so that the
timestamp and revision number marking the end of its life are available. We use a pseudo-object for this purpose. Archiving
audited objects, or portions of their history, may involve actually referencing and loading these pseudo-objects representing
the delete operation.

Update Propagation. An important objective of the audit mechanism should be to update the minimum amount of information
to document a change fully. For this reason we reject the simple “archive copy” approach to auditing whereby the entire
composite object is copied each time a component changes. Thus, we should not simply make a copy of the entire Dept
composite hierarchy just because an Emp changed because this produces a huge amount of redundant data.

Auditing a composite hierarchy is implemented in our system by propagating the update of a component through the
relationship and composite parent objects using back references. For example, updating member data in an Emp object will
trigger an update in the EmpList and Dept but will not necessitate an update or copy of other Emps or of other components of
Dept. It is necessary to mark composite objects as updated even though their member data has not changed because the
composite they represent has changed. Note that there is nothing to be gained by updating a nonaudited object that
references an audited one because it does not have a history corresponding to the past history of the referenced object.
Therefore, for example, Division is not updated when Dept changes.

It is impractical to expect programmers to follow these back references each time they update an object. It is also asking for
bugs to expect them to qualify the propagation correctly according to audit state and update type. We have solved this
problem by incorporating back references implicitly within relationship objects and component objects. The object manager
code propagates updates automatically as appropriate.

The audit contents of a database can be illustrated using Fig. 4, an example history of a part of the example schema in Fig. 3.
The number shown for each object at a particular time is its revision number, a simple count of the number of database
transactions that have changed the object. We see that Division has not been changed since it was created. DeptList was created
at the same time as revision 1 but has been modified twice since then (when Deptl and then Dept2 were added). Since DeptList
is not audited, only the last revision (revision 3) exists in the database.

Object Time —»

Division 1

DeptList 3
Deptl
EmplListl
Empl
Emp2 1 2 3D
Dept2 1
EmplList2 1

N
NN
w w
S~
o o

Fig. 4. Example object history.

Article 10 August 1997 Hewlett-Packard Journal 5



The behavior of audited objects is different. Deptl and its EmpListl were added to the DeptList as revisions 1. When Empl was
added to EmplListl, the update was propagated to Deptl as well as EmpListl so that the revision of the composite object Deptl
reflects a change to one of its components. The same thing happens when Emp2 is added. Note that Empl is not updated in
this operation, nor does the update propagate to the nonaudited DeptList. A subsequent update of Emp2 (revision 2) similarly
causes propagated updates to EmpListl and Deptl. To make the example interesting, Emp2 has been deleted, represented by the
creation of the pseudo-object with revision number 3D. This object really exists in the database as a marker of the end of the
life of Emp2 (figuratively, we hope). Just as for an update, this delete operation causes an update of EmpListl and Deptl.

Lock Propagation. For pessimistic concurrency models it is necessary to acquire an explicit lock on all objects to be updated
at commit. Consequently, the object manager should propagate exclusive locks in the same way that it propagates updates
and be able to deal with restoring locks to their original type if the propagation should fail partway through the propagation.

Audit Log. Another objective is to summarize changes to the composite Dept object in one place. In this example, suppose
there are several changes to each of three Emps and to some other components (not shown) in a single transaction. The
update mechanism records the fact in the Dept object that something changed in at least one component object in this
transaction, but we need the AuditLog text object to itemize the specific changes bundled in that transaction. Fig. 3 shows
a list of AuditLog objects hanging from Dept. Each AuditLog object summarizes the changes for the composite Dept object
during a transaction. From the user’s point of view, a convenient implementation is to generate one-line entries in the log
automatically for each change the application makes to a component object or the composite object, and then require the
user to add only a summary comment before commit.

Object Access

Revision and Time Retrieval. An audited object can be retrieved from the database by specifying either a specific revision

of the object or by specifying an absolute time and finding the object that was current at that time. A special time token
represents current time (also known as NOW in the literature), corresponding to the most recent object revision. Accessing
objects by absolute time requires that the commit timestamp of an object be determined so that it corresponds correctly to
the actions of multiple clients in a distributed database environment. A consistent source of time must be available to all
clients and time must be specified precisely enough to distinguish two transactions on a fast network.

An example is the best way to explain why both access methods are needed. A common way to query the database history
in Fig. 4 would be to locate the current Deptl and then ask to see each of its previous revisions. Retrieving revision 5 of Deptl,
the system would use its commit timestamp to retrieve revision 1 of Empl and not find Emp2 because it was deleted at this
time in EmplListl. Moving back in time to revision 4 of Deptl, its EmpListl would recover revision 1 of Empl again and also find
revision 2 of Emp2. Instead of starting with the current revision of Deptl, the initial query could have specified any absolute
time, say one somewhere between revisions 2 and 3 of Deptl to find revision 2 of Deptl, then the commit timestamp of
revision 2 would be used to find component data.

Multiple Revision Management. A consequence of auditing objects is that multiple revisions of the same object can exist in the
client cache at the same time. This presents a number of practical problems for application programmers who need a simple
mechanism for specifying the correct object revision to access. We have found that extending the meaning of locking an
object to include cache management of old and current revisions of an object as well as the traditional meaning of granting
an explicit lock on the object is a practical solution to this problem.

Accessing Objects through References. Mixing audited and nonaudited objects in the same application exposes the
implementer to numerous opportunities to generate run-time database load errors. Despite the problems of a schema with
both audited and nonaudited objects, it is often necessary to mix the two to avoid creating impractical quantities of data in
the database. A few referencing rules, if they can be enforced, solve the problems.

e Rule 1: Current access to nonaudited objects. A nonaudited object must always be accessed as a current-time
object, meaning the latest one available from the database. For example, all revisions of Dept use current time
when accessing DeptOffice because old revisions of DeptOffice do not exist. If an old time were specified in the
access request and DeptOffice had not been changed, the access would succeed, but a few minutes later, after
DeptOffice had been updated by another client and its timestamp had changed, the same request would fail!

This rule is simple enough but does introduce some opportunities for apparently inconsistent behavior. For
example, if a report generated for a Dept uses the reference to DeptOffice to include its room number, the same
report repeated later on the same revision of the Dept could have another room number if DeptOffice had been
changed. Worse, the DeptOffice could have been deleted from the Division causing a load error. These apparent
problems are not the fault of the database system but rather intrinsic in the heterogeneous schema. They are
solved either by auditing DeptOffice or by indicating that DeptOffice is deleted by status data within the object
rather than deleting the object.

e Rule 2: Qualified access from nonaudited to audited objects. As explained above, an access time or specific
revision number must be specified when accessing an audited object. For example, the Division can reference a
Dept in three ways: by specific revision, by current time (meaning the latest revision), or by absolute time. In
practice, a user does not generally know a specific revision of the Dept object or a specific commit timestamp.
Therefore the most useful access times are current time or an absolute time the user specifies for some reason.

Article 10 August 1997 Hewlett-Packard Journal 6



A continuing complication when accessing audited objects is that the object exists at some times but not
others. For example, if we delete the Dept when it is transferred out of the Division, we can’t simply delete it from
the DeptList because we may need to access the old Dept information in the future. Thus, the reference to a Dept
should be tested for accessibility before we try to load it for a specific time to avoid a load error. These
problems are solved if we simply audit the DeptList and Division.

e Rule 3: Self-timestamp access between audited objects. The easy and foolproof way for an audited object to
access another audited object is for it to use its own commit timestamp. Furthermore, it is permissible for an
audited object to drop a reference when the object is deleted (or for any other reason) because its previous
revisions will still have the reference. However, there are some complications.

It may be necessary for an object to access the same object in different ways. Suppose the DeptOffice in Fig. 3
were audited. If we create a report on a revision of Dept and include DeptOffice information, the method in Dept
creating the report should use its timestamp access to DeptOffice to get contemporaneous information. However,
if a Dept method is programmed to update the DeptOffice, say with its identification information, it is important
that the current DeptOffice be accessed, because only a current object can be updated. As long as the Dept is
updated first, timestamp access can be used for both but it will not work if the update in Dept is marked after
accessing DeptOffice. In general, it is safer to code current access explicitly when updating a referenced object.

Midlife Changes of an Object. It is permissible to change an object from nonaudited to audited at some time in its life. Probably
the most common reason to do this is to avoid generating large amounts of data while an object is in some draft stage and
being updated frequently. Keep in mind that the object can be a composite object hierarchy encompassing hundreds of large
objects. Only after some approval stage does the application really want to track the life of this composite construct.

Making an object audited may change the rules it uses to access component objects and propagate updates. By
implementing these mechanisms in object manager utilities, the change can be made transparent to most application
developers.

Schema Constraints

The previous discussion leads to a simple rule for auditing classes in a schema: audit the components and relationships if the
composite is audited. For a composite object to truly represent the state of a component hierarchy, all the components and
component-composite relationships beneath the composite must be audited when the composite is audited. Only then will
locks and updates be propagated correctly and can the composite use its timestamp to access its components reliably.

For example, Fig. 3 shows the AuditLog as audited even though we expect to create only a single AuditLog revision for each
transaction. Marking it audited follows the rule to acquire the programming simplifications enumerated above. There is
really no penalty in this case, because storing one revision of an audited object takes no more room than storing one revision
of a nonaudited one.

There are reasons for breaking this rule. In large realistic systems (in contrast to small demonstration ones) we face realistic
constraints on space and often somewhat ambiguous application requirements. As an example, consider DeptOffice which is
marked as nonaudited in Fig. 3. If we assume that there are good application reasons for not auditing DeptOffice, we have to
carefully access the references between Dept and DeptOffice according to the complications discussed above and accept the
apparent inconsistencies that these relationships may produce.

Database Storage

Object storage implementations are beyond the scope of this article, but it is worthwhile to mention a couple of
considerations. First, it is not necessary to have a specialized database to store audited objects. We have implemented
an auditing database that can use either Oracle tables or our own file storage manager. The main complications are:

e Providing an efficient access method that will find an object current at a time that does not necessarily
correspond to a timestamp

e Handling pseudo-objects representing delete.

Second, it is advisable to provide efficient access to current objects. Because audited objects are never deleted it is not
unreasonable to expect hundreds of copies of an object in an old database. Most applications will primarily access the
current revision of an object and have to stumble over all the old revisions unless the storage manager distinguishes current
and old audited data. It may be worth introducing some overhead to move the old revision of an object when a new revision
appears to maintain reasonable access efficiency.

Some object database systems map object data to relational tables. The relational system can represent the primary object
depository or, alternatively, only selected data can be mapped to enable customers to use the ad hoc query and report-
writing capabilities of the relational database system. Extending these systems to handle audited data simply requires adding
a revision number, timestamp, and object status code to the mapped data. The ad hoc user should be able to formulate the
same type of revision and time dependent queries of the relational database as a programming language does of the object
database. The status is necessary to distinguish old audit data, current objects, and deleted pseudo-objects.

Article 10 August 1997 Hewlett-Packard Journal 7



Archiving
A lot of database data is created very rapidly in auditing databases. At some point some of it must be moved to secondary

storage as archived data. As usual, auditing database systems pose special challenges for thinning data without corrupting
the remaining objects.

What Is an Archive? Several types of archives are possible. One common repository is a file containing object data in a special
format and probably compressed. Data is moved to the archive using special archive utilities and must be dearchived back
into the active database for access using the same special utilities. This method maximizes storage compactness but pays for
it by a cumbersome process to retrieve the archived data when needed. Another possibility is to move data to a separate
data partition (table space) that can be taken offline. Access to the archived data might require dearchiving or, if the
complexity is tractable, unioning the archived data with the active data in queries.

At the other extreme is the use of a distributed database system to connect the active and (possibly multiple) archive
databases. The archive medium, then, is just another database that should have read-only access (except during an archive
operation by system utilities). A distributed database system connects the active and archive databases during the archive
and dearchive processes, allowing the data to be moved between databases as a distributed transaction. This is the method
we have chosen to use in our products. A distributed archive system allows continued growth of archived data while
retaining reasonable access times when necessary. Another advantage is the reliability of the archive and dearchive
processes because they are a distributed transaction subject to two-phase commit protocols and recovery mechanisms.
Finally, it is possible to access archived data automatically without dearchiving if the archive database is on line. This
indirect access feature is explained more fully below.

Archiving Entire Objects. The first mechanism for thinning data is to remove objects that will no longer be modified. Generally
status within the object indicates when this state of life has been achieved or, perhaps, just the time since the object was last
modified is sufficient. Can we just remove all revisions of the object from the active database and put them in an archive
record?

The first problem is simply finding the old object because it might have been deleted. It might not even be in the list of
current objects in a nonaudited list. For example, in Fig. 3 we had better not delete a Dept or delete it from the DeptList until
the time comes to archive, or we will never be able to find the orphaned object. When archiving a Dept it would be an
oversight to archive just the current Emps. What about the one that was deleted earlier in the life of the Dept and is referenced
only in an old revision? Fig. 4 shows this to be the case for Emp2 in Deptl. Evidently, it will be necessary to search all the old
revisions of all composite objects just to identify all candidates for archiving. A special key field to identify all components
of a composite to be archived is a big help here.

The second, admittedly mechanistic, worry is how to remove an audited object, since deleting actually results in inserting
a new pseudo-object, and we can’t even access a deleted object at current time! Presumably some additional code design
and implementation provides a mechanism for actually removing an audited object and all of its old revisions, as well as
accessing deleted objects. This operation is called transfer out to distinguish it from deletion. Similarly, the database must
allow transfer in of multiple object revisions, including pseudo-objects representing delete.

Now we can move on to the problem of other objects that access the archived object. Because archiving is not deleting,
objects that reference an archived object need to retain these references in case the archived object must be accessed in
the future. For example, we should retain an entry in the nonaudited DeptList for an archived Dept object even if it is not
immediately accessible. One solution is to place a status object on each relationship in the DeptList. This status object can
contain archive information. Another solution is to replace the archived Dept object (and its components) with a placeholder
object that marks it as archived and could also contain archive information. Unless we want to start changing references in
old objects, this new placeholder object will have the same OID (object identifier) as the old one. A variation on the second
method is to record archive information within the ODBMS and trap references to archived objects.

These solutions work if the referencing object is not audited. But what if it is audited? Updating the current object or
marking the status of its reference to the archived object may be satisfactory for current time access but will result in a load
error if older revisions attempt to access the object using references that were valid back when the old revision was current.
Unless we want to start updating old revisions (a scary idea if we want to trust the integrity of audited data), the archiving
mechanism must handle these old references between audited objects without modification or qualification of the old
references. The general solution to the archive-reference problem probably must be implemented at the database level. The
database lock or load mechanism must be able to distinguish a reference to an object that never existed for the revision-time
criteria specified from one that existed but is now archived. The user must be notified that the data is archived without
disrupting normal processes.

Incremental (Time-Slice) Archiving. In some applications it may not be practical to archive entire objects. The life time of some
archivable objects (actually composite objects with thousands of component objects) in some systems can be as long as five
years, making archiving the object theoretically possible at some time but not very useful for reducing online data on a
monthly or yearly basis. Clearly a mechanism for archiving just the aged revisions of objects is necessary in these
applications.

Article 10 August 1997 Hewlett-Packard Journal 8



The best way to specify incremental archiving is on a time basis, because time can be applied uniformly to all objects. In this
scenario we could specify a list of candidate archive objects and a threshold archive time, such that all revisions of these
objects found with a commit timestamp equal to or earlier than the archive threshold would be moved to the archive. Well,
actually, not quite all of them! Since we must satisfy requests by the active database for the object at the threshold time, we
must keep the one object revision with a commit timestamp before the threshold time because this revision is current at the
threshold time (unless the object was deleted, of course).

To implement this incremental archive mechanism, as described so far, the system must keep track of the threshold time and
archive information about the revisions of each object. Attempted access to revisions extant before the archive time should
receive an archive error and perhaps supply the archive information so that the user knows where the data can be found.

In this scenario, archiving probably is not a one-time operation. What do we do with the remaining revisions of the object
when the archive operation is repeated a month later, specifying a threshold archive time one month later than that in the
previous operation? From a bookkeeping point of view, it would make sense to simply append the new archive revisions of
an object to the old ones in the archive and update archive information in the active database. In practice most customers
will not find this method any more acceptable than filing tax records by subject rather than date. Most archive time slices
will be kept as an archive record labeled by the date range of the data it contains; it could be a tape collecting dust in a rack.
If we needed to append to an archive whenever more revisions of a long-lived object were archived, the archive operation
would eventually require mounting many archives. Thus, a practical archive mechanism must allow various revisions of an
audited object to be scattered in multiple archive databases.

If a single object can be contained in multiple archives, we must know which archive might contain the requested data.
Moreover, it would be nice to guarantee that the load request could be satisfied if the archive were made available. A
customer will be upset if the archive supposedly containing the missing data is found and mounted and then the customer is
told that the data still missing! Thus, it will be most convenient to retain in the active database complete information about
the range of revisions and commit timestamps of an object in each archive. This archive record, called an archive unit,
contains information about the continuous sequence of object revisions of an object that were transferred in the archive
operation.

An example of time-slice archiving is presented in Fig. 5. An audited object identified by ObjNum 101 has created 10 revisions
in the active database. At some time in the past, an archive database was created, designated as 1995 here. The first
time-slice operation moved revision 1 to the archive database and left an archive record in the active database. The archived
object acquired a new identifier, shown as 23, because an ObjNum is unique only within a single database. Subsequently,
another archive operation moved revisions 2 and 3 to the same database, leaving another archive record. The following year,
another archive database was created and revisions 4, 5, and 6 were archived here.

Dearchiving and Archive Access

Dearchive Operation. The process of dearchiving is just the reverse of archiving, whether the archive medium is a compressed
file or a remote database. If incremental archiving is used and an archive record is maintained in the active database, it
reduces bookkeeping to dearchive an archive unit (group of continuous object revisions) and remove the archive record
from the active database. It is also necessary to dearchive archive units continuously from the youngest one to the target one
to ensure the integrity of the time-retrieval mechanism. There must be a continuous revision sequence from the current
timestamp to the timestamp preceding or equal to the target timestamp.

Indirect Access to Archive Data. Of greater interest is the possibility that dearchiving may not be necessary. If archived data
resides on archive databases in a distributed database system, it is possible for a sophisticated object manager to access
archived data in remote archive databases and integrate it with the active data. Important advantages of this mechanism are:

e Reduced resources for the active database because dearchiving is not necessary
e Transparent access to archived data by ordinary users

e Reduced administration, because the archive and dearchive processes become simply distributed transactions
without introducing special mechanisms into the life of a system administrator.

This mechanism relies on maintenance of an archive record in the active database that records information about each
archive unit placed in an archive database. The existence of an archive record in the active database allows the active
database to return a forwarding reference instead of a load error when a requested revision or time of an object has been
archived. The reference contains the address of the archive database, allowing the object manager to proceed to indirectly
load the archived object as an alias for the requested one. Obviously, alias objects must be marked to prohibit update. The
object manager can take the appropriate action to access archived objects (or revisions of objects) depending on the wishes
of the user and system policy. In our system, the object manager recognizes several access modes to indicate how to treat
archived data for each application operation.

Article 10 August 1997 Hewlett-Packard Journal 9



ObjNum 101 ObjNum 52

Rev Rev 6
Rev Rev 5
Rev Rev 4
Rev

Rev

Rev 2-3

Rev

ObjNum 23

Rev 3
Rev 2
Rev 1

Fig. 5. Time-slice archive example.

Conclusion

The trend towards requiring audit trails of more and more processes is driving new database capabilities. Old models of
audit logging and periodic archives do not provide routine access to audit data and are not scalable to large systems. We
should not view auditing as a specialized, application-specific capability to be overlaid on a general-purpose database.

Object database systems are well-suited to implement this new technology because much of the technology can be
incorporated efficiently within the DBMS, freeing the designer and programmer from many of the new complexities
introduced in the discussion above. Ad hoc implementations using stored procedures, triggers, or other enhancements of
relational databases will have difficulty matching the efficiency of systems in which auditing is an implicit capability.

Auditing objects in complex schemas and archiving the data in a distributed environment are complex processes that would
appear to be difficult to implement in ordinary applications. On the contrary, we have found that these capabilities can be
used reliably by application developers because most of the complexity can be concentrated in the object manager of an
ODBMS and core class code. Similarly, access to archived data can be nearly transparent to most application code with
judicious use of access modes and exception traps if the object manager implements automatic indirect access to archive
databases.

The ambitious goals of rapid access to active data, convenient access to old data, practical database size, and reasonable
application complexity can be achieved in an internally audited system by careful design of a distributed database system.

References

1. N. Kline, “An Update of the Temporal Database Bibliography,” SIGMOD Record, Vol. 22, no. 4, 1993, pp. 66-80.
2. A.U. Tansel, et al, Temporal Databases, Benjamin/Cummings, 1993.

3. lllustra TimeSeries DataBlade, lllustra Information Technologies Data Sheet, January 1996.

4. J. Rumbaugh, et al, Object-Oriented Modeling and Design, Prentice Hall, 1991.

Article 10 August 1997 Hewlett-Packard Journal 10



Online
More information about the products associated with this article can be found at:
http://www.dmo.hp.com/apg/products/chemims.html

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93 branded products.

UNIXO is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.
X/Openl is a registered trademark and the X device is a trademark of X/Open Company Limited in the UK and other countries.
Windows and Microsoft are U.S. registered trademarks of Microsoft Corporation.

» Go to Subarticle 10a
P Go to Next Article
» Go to Journal Home Page

Article 10 August 1997 Hewlett-Packard Journal 11


http://www.hp.com/hpj/97aug/au97a10a.pdf
http://www.hp.com/hpj/97aug/au97a11.htm
http://www.hp.com/hpj/journal.html
http://www.dmo.hp.com/apg/products/chemlms.html

