
Article 2 October 1996 Hewlett-Packard Journal 1

Distributed Processing Environment:

A Platform for Distributed

Telecommunications Applications

Vendors developing applications for a heterogeneous, distributed
environment need to be able to build towards a platform that
integrates all the management and control functions of distributed
computing into a unified software architecture that allows their
applications to be available from any point in the network
regardless of the system or geographic location.

by Frank Leong, Satya P. Mylavarabhata, Trong Nguyen, and Frank Quemada

The HP Distributed Processing Environment (DPE) provides infrastructure services that facilitate the rapid development,
deployment, and management of distributed applications in the telecommunications arena. DPE is a key component of the
Telecommunications Information Networking Architecture (TINA), an architecture for multimedia networks that emphasizes
distribution and interoperability of telecommunications applications. TINA is an evolving architecture and is governed by the
TINA Consortium (TINA-C), which is a project sponsored by 40 leading telecommunications and computing companies. The
project’s aim is to find a way to integrate all telecommunications management and control functions into a unified logical
software architecture supported by a single distributed computing platform.

This paper describes the architecture and components that make up HP DPE, a product that is compatible with (and will
evolve with) the TINA specifications.

INA, TINA, and DPE
HP DPE and TINA have a common root in the Information Networking Architecture (INA), which was originally developed
at Bellcore. TINA’s architecture specifies a distributed processing environment based on the original INA DPE specifications.
HP DPE provides key infrastructure services for INA and TINA.

INA defines a methodology and framework for developing, providing, and maintaining highly distributed systems,
characteristic of the next generation of communications environments. INA leverages and combines the efforts of multiple
standards bodies, research organizations, development organizations, and consortia (e.g., TMN, OSCA, OSF/DCE, OMG
CORBA, OSI/NMF, etc.). Fig. 1 shows the relationship between INA DPE and the TMN (Telecommunications Management
Network) model. TMN is described in Article 1 and the DPE services are described later in this article.

INA applications and services are deployed as software modules called building blocks. A building block is made up of
several objects and can be installed and modified independently of other building blocks in the network. Building blocks
interact with one another via interfaces called contracts. Contracts are the exposed interfaces of an object in that they are
used for communication between building blocks. They are also backward compatible to ensure interoperability between
software objects contained in multivendor building blocks. Contracts are subject to authentication and access control
checks.

A building block can be a server or a client or both. A server must offer one or more contracts to allow clients to interface
and make use of its services. In the DPE architecture (described below), applications are modeled as building blocks. The
DPE itself is made up of server building blocks (e.g., contract trader, repository, etc.) which offer contract interfaces to
application client building blocks.

The INA structure enables distributed software building blocks from multiple suppliers to interoperate. This distributed
object computing results in faster software development since there is greater software reuse and modularity in design.

In summary, INA is a framework for interoperability, portability, and network resource management. The following goals
have been established for INA:

� Rapid and flexible introduction of new services

� Reuse of software modules

� Use of general-purpose solutions

� Multivendor hardware and software solutions

� Independence of applications from the transport implementation technology

http://www.hp.com/hpj/oct96/oc96a1.htm

Article 2 October 1996 Hewlett-Packard Journal 2

Managed
Object
Agent

INA
DPE

Services

Application Application

Application Application

Application Application

Application Application

Managed
Object
Agent

Native Computing and Communication Environment

Business
Management
Layer

Service
Management
Layer

Network
Management
Layer

Element
Management
Layer

Network
Element
Layer

Fig. 1. The INA DPE architecture applied to the Telecommunications Management Network (TMN).

TMN Layers

� Separate transport technologies from higher-level control and OAM&P (operation, administration,
maintenance, and provisioning)

� Allowance of customer access to OAM&P services

� Seamless integration of services

� Network and element management.

DPE Architecture
Fig. 2 shows the components and services that make up the DPE architecture.

Application

Node
Controller

DPE Kernel

Application

Contract Adapters
(DPE APIs)

HP
OpenView DCE RPC CORBA

Repository

Contract
Trader

Register

Management
Front End

DPE Services

Fig. 2. Components of the DPE architecture.

Article 2 October 1996 Hewlett-Packard Journal 3

DPE Kernel. The DPE kernel provides the foundation for building block interaction and execution services. To implement
these services, the DPE kernel uses the services provided by the underlying native computing and communications
environment, which include:

� DCE: threads, security, RPC, and IDL compiler

� CORBA: HP ORB+ with IIO and DCE CIO protocols and C-IDL compiler

� HP OpenView components: XMP API, pmd (postmaster daemon), orsd (object registration service), and ovead
daemon (event sieve agent).

The DPE kernel is resident in every node of a distributed system. Building blocks and other DPE components at a node
cannot access the DPE kernel at other nodes directly. Access to the DPE kernel services at a remote node is accomplished
using the interprocess communication facilities of the native computing environment of the node.

Contract Adapter. A contract adapter is an application programming interface that provides all the transparencies required by
a client or server building block. It also provides an API for accessing either application-level services or services provided
by DPE. Contract adapters are kept as library modules which can be linked with building blocks before or during execution.

The inclusion of adapters as components of DPE implies that the components of DPE increase over time as new applications
are deployed in a network. When a contract type is specified and registered for some application-level service, adapters for
these contract types can be automatically generated and made a part of DPE.

DPE Services. Each DPE service is a building block and access to its functions is only through contracts offered by the DPE
service. A node may have zero or more DPE services installed. Since access to a function provided by a DPE service is
available only through a contract, a building block or a DPE service in a node can use the functions provided by a DPE
service in a remote node. Thus, DPE services depend on the communication and execution services provided by the DPE
kernel. References to contracts of some of the DPE services, such as the trader, can be passed to a building block when it is
activated.

Although both DPE services and applications are built using the concepts of building blocks and contracts, there is a
fundamental difference between the two. DPE services do not provide network resource management functions, nor do they
provide telecommunications services to network customers. These functions are provided only by applications.

Fig. 3 shows the interactions among the DPE services shown in Fig. 2. An arrow directed from one service to another
indicates that the source service provides services to the destination service.

Node
Controller

Repository Trader

Front End

Registrar

Building Blocks

DPE Kernel

Fig. 3. Interrelationships between different components in the DPE services.

Contract Trader. This DPE service provides a discovery service for client and server building blocks. It is the key service for
providing location transparency in a distributed network. When a building block offers a contract, information about this
contract is conveyed to the DPE kernel. This information includes the name of the corresponding contract type and the
value of the service attributes provided by the contract. DPE stores this information in the repository.

When a client wishes to invoke an operation defined in a specified contract type, it queries the DPE trader for one or more
references to contracts that match the specified type and whose service attribute values satisfy a constraint expression
supplied by the client. Regardless of where the server is physically located, the client can discover servers at run time, based
on the latest contract information recorded in the repository database. The DPE trader provides two types of contract
trading: attribute-based trading and resource-based trading.

The attribute-based form of contract discovery is based on the specified contract type and a constraint expression involving
any number of the service attributes. The constraint expression used by HP DPE is modeled after the ANSAware 2.0

Article 2 October 1996 Hewlett-Packard Journal 4

constraint language. This language supports relational operators on attributes and maximum, minimum, and logical
operators. This provides a great deal of flexibility in how a client discovers a server.

An example of a constraint expression might be a request to find one or more print servers that can print in color, provide A4
size paper, and use PostScript fonts. The constraint language would express this request as: attribute_list = color, A4, postscript. If
we need a certain capacity and speed for the printer, we might add a request for faster than six pages per minute: attribute_list > 6.

A resource-based form of contract discovery is an extension of attribute-based trading and is used by resource management
applications. In resource management applications, it is typical to provide service over a domain of resources. This domain
may be dynamic. An example would be a connection management application that is responsible for providing connection
management services to all clients whose phone numbers (domain) begin with area code 408 and have the exchange number
447. This application may offer contracts over a domain that may vary in size depending on how many phone numbers are
actually assigned (e.g., all the numbers following 447). This type of trading requires the client to supply a contract type name,
a constraint expression, and the name of the resource. With this information the HP DPE trader can locate a server offering a
contract of the appropriate type that satisfies not only the search constraint expression, but also the specified resources.

Repository Server. This DPE service maintains persistent information for the operation of DPE. It stores specifications of
trading attributes, contracts, building blocks, and configuration information. The repository server provides operations for
the creation, retrieval, update, and withdrawal of DPE-persistent objects. These reference objects are used to initialize,
activate, deactivate, and withdraw contract and building block instances using a generic front-end administrative tool.
This server is implemented using the ObjectStore 4.0 OODBMS from Object Design Inc.

The information stored in the repository can be used for several purposes. The DPE front end can traverse repository
information to help application developers locate potential reusable attribute types, contract types, and building-block type
specifications. It also provides type information that allows the DPE controller to check for valid operation parameter types
at run time. The following three kinds of information are stored in the repository:

� Specification information. This consists of information contained in contract type specification templates and
building-block type specification templates registered with the DPE repository.

� Configuration information. This consists of information contained in the building-block configuration
templates, contract configuration templates, and node configuration templates registered with the DPE
repository. This means that the repository contains information needed for managing building-block
instantiating operations or startup operations.

� Trading information. This consists of information that supports trading operations, specifically contract types
and contract instances.

Registrar. This DPE service provides registration and withdrawal services for the various templates used in the operability
services, including specification templates, installation templates, and configuration templates. Its function is to parse and
verify the correctness of the specification templates before invoking the registration operation of the repository server.

Node Controller. The node controller at each node provides activation, deactivation, monitor, and restart functions for
building blocks configured in that node. It receives notifications when a building block is started and deactivated, and
continuously monitors the “liveness” of all building blocks executing in the node. Since the implementation of these
functions is dependent on the native computing environment’s facilities, one instance of the node controller building block
is required in each node.

Management Front End. HP DPE provides a graphical front end and a command line interface to DPE system administration,
building-block management, repository browser functionality, and DPE shutdown and restart functions. This user interface
offers a generic and uniform way of managing the whole DPE domain from any node. DPE objects present in the GUI are
organized in a hierarchical structure similar to the renowned Smalltalk browser. This structure is organized as nodes,
building block types and instances, and contract types and instances (see Fig. 4). The DPE front-end interface provides
the following functions:

� Contract building-block type registration

� Activation, shutdown, and withdrawal of building-block instances

� Activation, shutdown, and withdrawal of contract instances

� Setup and modification of contract trading attributes

� Browser for DPE objects.

With the command line interface, routine DPE administrative tasks can be automated using shell script languages.

DPE Telecommunications Examples

This section provides two examples of the use of HP DPE in the design and deployment of telecommunications services and
applications. The steps illustrated in these examples present a high-level view of the communications that occur. The actual
designs are much more complex. Also, to reduce the complexity of the figures, three assumptions have been made:

Article 2 October 1996 Hewlett-Packard Journal 5

Fig. 4. The DPE graphical user interface.

� All interfaces that are used have already been registered with the DPE registrar, and binding information for
each interface is available from the DPE repository.

� All communication with the DPE trading service is done via an RPC mechanism.

� Most applications will either trade at initialization time to obtain binding handles or simply use a well-known
address to maximize throughput. Trading during execution will most likely be reserved for those occasions that
dictate the need for dynamic binding. For illustrative purposes, however, the examples show trading occurring
for each initial communication between any two modules.

Example 1: Permanent Virtual Circuit Service
The most basic connection service provided by broadband networks is a permanent virtual circuit (PVC) service. This
service provides the capability of setting up a connection between two or more points with given bandwidth and
quality-of-service (QoS) parameters. Typically PVCs are long-term connections used to interconnect LANs or provide
long-term video service between distant points. Fig. 5 illustrates how a simple PVC service might be designed using
an architecture based on INA. Each of the following steps corresponds to a number in Fig. 5.

Presentation

Application

Management

Platform

Connected Management Module

PVC Presentation Module

PVC Processing Module

Distributed
Processing

Environment

Connection
Data Building

Block

1

3

5 and 8

2

4

6 7

10

11

9

Managed Object Agents
and Network Elements

Fig. 5. The architecture for a permanent virtual circuit service.

1. The PVC presentation module consults with the DPE trading service for the location of the PVC processing
module applications. This communication is done via an RPC (remote procedure call) interface.

2. The PVC presentation module provides the PVC processing module with the user input parameters that define
the PVC being requested. This communication is done via an RPC interface.

3. The PVC processing module consults with the DPE trader to locate the connection management application
server that controls the switch servicing the originating end of the PVC. This is done via an RPC interface.

4. The PVC processing module uses the DPE RPC mechanism to access the connection management application.
If the connection requires more than one switch, the connection manager will trade for and bind to another
connection manager to move the connection towards the termination point (this is not shown in Fig. 5).

Article 2 October 1996 Hewlett-Packard Journal 6

5. The connection manager trades for the binding handle of the managed object agent that services the
originating (and terminating if local) points. For performance reasons, in most designs this step is done at
system initialization time.

6. The connection manager instructs the managed object agent to connect the originating end using the DPE
system management protocol CMISE (Common Management Information Service Element).

7. The connection manager instructs the managed object agent to connect the terminating point using the CMISE
protocol.

8. The connection manager uses RPC to request a binding handle from the connection data building block.

9. The connection manager requests the connection data building block to update its data store to reflect the
addition of the new PVC connection. The communication is done via RPC.

10. The connection manager reports the establishment of a connection back to the PVC processing module via an
RPC.

11. The PVC processing module returns the status of the connection establishment back to the PVC presentation
module for display to the user.

Example 2: Switched Virtual Circuit Service
This example shows that the modularity and code reuse capability of the DPE architecture can be used to add new features.
The switched virtual circuit implementation shown in Fig. 6 provides users with the capability to establish or reconfigure
existing connection sessions at any time, much like voice telephony service. As shown in Fig. 6 the connection management,
data building block, and managed object agents are all being reused. Only the top two modules need to be replaced with new
code.

Presentation

Application

Management

Platform

Connected Management Module

SVC Presentation Module

SVC Processing Module

Distributed
Processing

Environment

Connection
Data Building

Block

1

3

5 and 8

2

4

6 7

10

11

9

Managed Object Agents
and Network Elements

SVC Switched Virtual Circuit

Fig. 6. The architecture for a switched virtual circuit service.

Summary
This paper has presented an overview of the HP DPE implementation. DPE plays a key role within the Telecommunications
Information Networking Architecture (TINA). HP DPE offers a development environment to develop distribution
transparency for both RPC-based and CMIP-based INA-compliant applications. This paper has also detailed the services
provided by HP DPE and described the implementation of the contract trading servers and contract adapters, the key
components providing distribution transparency.

Acknowledgments
The authors would like to acknowledge other members of the development and product team: Joel Fleck, Bruce Greenwood,
Hai-Wen Liang, David Wathen, and Chris Liou.

PostScript is a trademark of Adobe Systems Incorporated which may be registered in certain jurisdictions.

� Go to Article 3
� Go to Table of Contents
� Go to HP Journal Home Page

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a3.htm

