
Article 9 June 1996 Hewlett-Packard Journal 1

Constructing An Application Server

In a dynamic networked environment in which there are several
hundred workstations and servers there is a constant demand for
new versions of software. In this environment software installation
procedures must be quick, flexible, and tolerant of change.

by Jill E. Swenson

With the rapid advancements and constant changes associated with computer technology, new and better hardware and
software capabilities can always be expected. Hardware comes and goes as needs fluctuate, and software popularity tends
to bloom and fade as fast as software features evolve. All this change makes managing software installation and updates
across more than 600 UNIX systems a very challenging task. This paper describes a project to simplify software
administration among a group of workstations at HP’s Integrated Circuits Business Division.

At one time our division software was purchased by system owners and installed on individual workstations as requested.
Users shared common applications by connecting their workstations in HP-UX* clusters in which one machine’s disks were
used by many diskless workstations (cnodes).1 These clusters grew large, and access to software became a more important
component in deciding system configuration than performance or networking issues. Some software was shared between
cluster servers through NFS mounts, and this led to what we call “spaghetti mounts,” which is many machines mounting
portions of each others’ disks to access shared software (Fig. 1). Additionally, software installations were not tracked,
software versions were not synchronized, and network licensing was not effectively implemented.

Standalone
System

Cluster
Server B

cnode cnode cnode

Cluster
Server A

cnode cnode cnode

User Application B

User Application A

Lotus
Applications

AmiPro

SoftWindows

NFS (Remote) Mounts Used to Gain
Access to Software Applications on
Remote Systems

Local Disks

Fig. 1. An example of “spaghetti mounts,” which is many machines

mounting portions of each others’ disks to access shared software.

R

My goal for this project was to find a way to reduce users’ dependencies on cluster configurations, to untangle the mounts,
and to improve the way we installed, updated, removed, and tracked software. To do this, I moved the application code
files to a central server and connected all the user workstations to this server (see Fig. 2). File servers are not an unusual
concept, but application servers create unique challenges, and this one needed to be as easy to use as possible.

Article 9 June 1996 Hewlett-Packard Journal 2

Standalone
System

Cluster
Server B

cnode cnode cnode

Cluster
Server A

cnode cnode cnode

Shared Applications

NFS (Remote) Mounts Used to Gain
Access to Software Applications on
Remote Systems

Local Disks

Application
File Server

Fig. 2. A network configuration in which many machines are mounted

to an application server to gain access to shared software.

Developing the Structure
Since we had some spare equipment and disk space, a central software server was a convenient choice for the application
server. The basic concept was in place—add disks to the application server, install software on those disks, mount those
disks to client machines, and enable the client machines to run the software. Two issues that had to be dealt with were how
to mount disks so that symbolic links would be followed correctly on the application server and on the clients, and how to
isolate each application and allow it to reside in its desired location on each system. Finally, since saving administrative
effort was equally important, the entire process needed to be automated.

A search of the literature produced a helpful article describing how to manage local software on a network.2 Even more
conveniently, the article included the author’s installation script. Although not entirely suitable for our environment, this
article provided valuable ideas for establishing mount points, isolating applications, and creating configuration files for each
application.

Mount Points
To identify mount points, I looked at documentation for the HP-internal UNIX Common Operating Environment (UX-COE)
and the HP-UX 10.0 operating system. Both documents recommended using different locations for mounting local and
remote (NFS-mounted) disks. This meant that disks physically connected to the application server would be mounted in one
location on the server (e.g., /mnt/disk1) and in a different location on the server’s clients (e.g., /nfs/servername/ disk1) (see Fig. 3).
This approach makes logical sense, but it is limited because there is a route to a file on the server that the client doesn’t
know about. In other words, the server could refer to a file by the name /mnt/disk1/filename, but that name would not be valid
on a client. The client must call that file /nfs/servername/disk1/filename.

Client

Disk 1

Application
Server

/mnt/disk1/filename

/nfs/servername/disk1/filename

Disk n

filename

NFS Mount

Local Mount

Fig. 3. An example of using different locations to mount local and remote disks.

Article 9 June 1996 Hewlett-Packard Journal 3

Why Is this a problem?
Calling a file by multiple names typically does not cause problems. However, most application installation programs have a
problem with multiple names because they act under the assumption that code is installed on the machine where it will be
used and not on an application server. Many installation programs detect the directory into which code is installed and then
plug that directory name into scripts, use it to create symbolic links, and so on. The resulting scripts and links work correctly
on the application server, but fail on client systems.

To handle this, disks were mounted in the recommended locations and symbolic links were created on the application server
to allow it to refer to its own disks under the names used by the clients. Thus, when software is installed it is always
redirected, if possible, to the name used by clients.

In retrospect, this was not the best solution. Some particularly difficult installation processes resolve all symbolic links to
their absolute paths and use these paths to create scripts and symbolic links. Thus, no matter what name was used for the
installation directory, I would find some reference to /mnt/disk1 tucked away in a software configuration file or script. The
only way to fool these programs is to either ignore recommended standards and mount the disks to /nfs/servername/disk1 on
both the client and the server, or create “fake” symbolic links to the mount points on both machines.

After considering both options, I determined that the first option had the least number of disadvantages and was the simplest
to implement.

Software Organization
The next question was how to organize the software on the shared disks. Opinions varied. One approach was to put all code
into a common bin directory and set it up so that the administrator owned the bin directory on all machines. Although this
would ensure consistency, it wasn’t very flexible. Since all users don’t have identical software needs (some may be testing a
new version of software while others might be installing software packages that are not shared with others), it did not make
sense to force all systems to have an identical bin directory.

The approach used in reference 2 suggested isolating each application in its own directory tree and organizing the
components of the application in explicit directories (documentation files under the doc subdirectory, binaries under bin,
etc.). This idea of isolation was good, but it required spending time unnecessarily reorganizing the code components.

The software packages we were dealing with came from multiple developers, each of whom had a different idea about where
an application’s files should reside and the relative location of different components such as library, binary, and
configuration files. There was some concern that many of these software packages would not react well to being moved
around or being forced to run out of an unexpected directory. The best approach was to install each application into a
separate directory on the shared disks, and to use symbolic links to allow the application’s files to be logically located
wherever they would normally expect to be installed.

To keep this neat, each software package is installed into its own directory as if that directory were the root directory on the
system. In other words, if an application called editor came with a file called editor.dict, which it expected to reside in
/usr/local/lib, a directory for the new application would be created:

/nfs/servername/disk1/editor

and the editor.dict(ionary) file would be installed in

/nfs/servername/disk1/editor/usr/local/lib
/editor.dict

When this software is finally hooked up to client systems, they will each have a symbolic link:

/usr/local/lib/editor.dict –>
/nfs/servername/disk1/editor/usr/local/lib
/editor.dict

The software can find its data file where it expects, and all the files associated with the editor program can be isolated in one
directory tree which can be easily removed, replaced, or modified as needed.

Each application’s directory tree mimics the root file system, making it easy to see where the software components will
ultimately reside on client systems. Developers like the design because they can easily see the relative relationship of all
their files in isolation.

There are two significant issues with this approach. First, it requires that a large number of symbolic links be maintained on
multiple systems. Second, some applications might require configuration changes on the client or insist that certain files
physically reside on the client’s hard disk.

The solution to both of these problems is a configuration file and a process (script) to use it.

Article 9 June 1996 Hewlett-Packard Journal 4

Configuration File
Every application on the application server has an associated configuration file. This is an ASCII file, created manually, that
contains all the instructions necessary for installing the application on a client. For most applications, the configuration file
simply lists a number of symbolic links to create. In the example above, one line in the editor program’s configuration file
would look like:

LINK:/nfs/servername/disk1/editor/usr/local/lib
/editor.dict:/usr/local/lib/editor.dict

Each line in the configuration file contains a tag field followed by several colon-separated parameters. The tag field is a word
that has meaning to the configuration script. In this example, the LINK tag tells the script to create a symbolic link using the
next two fields as arguments. The syntax for the LINK command is:

LINK:/link/to/directory:/link/from/directory

Additional tags cause the configuration script to copy files (COPY), unlink directories (UNLINK), or execute programs.

Creating a configuration file is the most time-consuming action required when installing an application. It requires a good
knowledge of the directory structure on client machines and an understanding of the run-time environment expected by the
application. The overall goal is to minimize the number of links while allowing multiple applications to be installed where
they wish. However, with a little creativity, nearly any application can be dealt with, and once the configuration file is
constructed, it remains unchanged and can be used on every client.

The configuration file is also used to uninstall software. An option on the configuration script causes it to deal with certain
commands in reverse, removing links and files that had been copied to the client.

In accordance with HP-UX 10.0 file structure recommendations, the configuration file is created in /etc/opt/appname/config.fs.
To make the configuration files readable from client machines, they are placed under each application’s directory tree. Thus,
the /nfs/servername/disk1/editor/etc/opt/editor/config.fs file would be the configuration file for the editor application mentioned above.

The Script
The configuration script is used to install an application located on a file server on a workstation (i.e., it sets up links to
applications on the server). Because the configuration (and application) files reside on a remote server, a new client must
mount the remote server’s disks before installing software. The installation script establishes mounts (-m option) to the file
server and creates the required links (-c option) using information from the configuration file. The installation script has an
option (-u) to undo a mount and uninstall software. The command line to the configuration script to establish the mount
points and set up the links for the editor application would be:

scriptname -m servername:/mnt/disk1:/nfs/
servername/disk1 -f -c /nfs/servername/disk1/editor/etc/opt/editor/config.fs

The –m option introduces the server and client involved in establishing the mount points, and the –f and –c options introduce
the configuration file.

The configuration script is written in Perl (Practical Extraction Report Language) because this is the language that provides
the easiest and most efficient techniques for reading through the configuration file once, storing the information, and acting
on it later. Shell scripts require more coding to perform the same steps, and a C program would have to be compiled for
every platform we support. Thus, Perl was a good choice. Fig. 4 shows the portions of the installation script responsible for
mounting disks and reading a configuration file.

The configuration script reads and acts on instructions in the configuration file. It checks the first field of each line for a tag,
which is a special word (e.g., LINK) describing a command. Unknown tags are ignored.

Because the configuration files reside on the server, clients must mount the server’s disk before attempting to read any
configuration files. Although the configuration script can be used to mount the server’s disk, it does not currently modify
a client’s boot procedures or its /etc/checklist file. The system administrator still needs to perform these steps manually.

The configuration script uses the same configuration file for installing and uninstalling. It does an uninstall by removing all
files or directories listed as LINK or COPY in the configuration file.

Remaining Issues
With any project there are always lingering issues. This section describes some of these issues.

Software Location and Fine-Tuning. Although it’s convenient to locate software centrally, not everything belongs on a remote
machine. Ideally, enough software should remain on local workstations so that the users are reasonably functional when the
application server is down for maintenance. This means that key files such as operating system components, screen icons,
and critical applications such as electronic mail readers should reside on local systems. Also, performance is impacted by
accessing remote files so finding the right mix of local and remote files can have a significant role in application
performance.

Article 9 June 1996 Hewlett-Packard Journal 5

F

 }else
 {
 exit 97;
 }
} # End subroutine makemounts

##
Read config file, filling up variables with
contents.
##

sub readconfig {
 print ”Starting readconfig subroutine \n”
 if ($opt_v);
 while ($_=<CONFIGFILE>){

The configuration file consists of an initial
tag and colon-separated parameters. Break each
line into its components

 chop;
 ($tag, @parms)=split(/:/)
 .
 .
 .
 if ($tag eq ”LINK”)
 {
 $linkto[$numlinks]=$parms[0];
 $linkfrom[$numlinks]=$parms[1];
 $numlinks++;
 }
 .
 .
 .
 }# while
} # End of subroutine readconfig

##
Process links: Create all links specified in
config file (must run readconfig() first).
##
sub linkall {

 print ”Starting linkall subroutine \n”
 if ($opt_v);

 for ($i=0; $i<($numlinks); $i++)
 {
 $linkfrompath=$linkfrom[$i];
 $linkfrompath= s’[a–z_0–9.\–]*$”;
 # Chop file/dir name off path

If parent directory path doesn’t exist,
create it.
&makedir(”$linkfrompath”);

Check for existing file/link (exit or
remove it depending on –f option)
if (–e $linkfrom[$i]&&(!$opt_f))
 {
 print ”Non-Link exists:” .$linkfrom[$i].
 ”Terminating\n”;

Options:
–m Mountinfo: Revive/establish mount points
–c Configfile: Revive/establish links
–f:Force symlinks and mounts (removes
existing files and directories).
–u:Unmount or remove links, depending
on other options used
–v:Verbose
#
require ’getopts.pl’;
do Getopts(’m:c:fuv’);

Initialize variables
$numlinks=0;
$numunlinks=0;
.
.
.
##
Read mount information.
##
sub readmount {
 print ”Starting readmount subroutine \n”
 if ($opt_v);

The mount parameter consists of the machine
to mount from, the directory on that machine
to mount and the directory to mount to (on
the client machine), all separated by ”:”
characters.
Break line into its components.

 ($machine, $mountfrom, $mountto)=split
 (/:/,$mountpoint);
 .
 .
 .
}# End subroutine readmount

##
Perform mounts, creating directories, if
needed.
##
sub makemounts {

 $dontdo=0
 if (substr($mountto,0,1)eq ’/’)
 {
 print ”Making” .$mountto .”\n”;
 if ((system(”/usr/bin/bdf$mountto|/bin/
 grep $machine:$mountfrom”))==0)
 {
 print ”Correct mount point already exists\n”;
 $dontdo=1;
 }
 &makedir (”$mountto”);
 print ”mounting $machine:$mountfrom\n”;
 if ((–d $mountto)&&(!$dontdo))
 {
 system (”/etc/mount –o soft $machine:
 $mountfrom $mountto”);
 }

A

B C D

E

G

H

I
J

Fig. 4. Portions of the configuration script for mounting disks, reading configuration files, and creating links.

Article 9 June 1996 Hewlett-Packard Journal 6

 exit 98:
 }

 elsif (–e $linkfrom[$i])&&($opt_f))
 {
Force (–f) section — force the link (remove
existing file or directory tree.
 if (–f $linkfrom[$i])
 {
 print ”Forcing removal of File”
 .$linkfrom[$i]. ”\n”;
 unlink ($linkfrom[$i];
 }
 elsif (–d $linkfrom[$i])
 {
 print ”Forcing removal of directory”
 .$linkfrom[$i]. ”\n”;
 system (”/bin/rm –rf $linkfrom[$i]”);
 }
 .
 .
 .
 }
for ($i=0; $i<($numlinks); $i++)
 {
 symlink ($linkto[$i], $linkfrom[$i];
 print ”Linking from ” .$linkfrom[$i].
 ”to ” .$linkto[$i]. ”\n”;
 }
}

Input String:
–m servername:/mnt/disk1:/nfs/servername/
disks –f –c /nfs/servername/disks/editor/
etc/opt/editor/config.fs

Server’s Name

Server’s Name for Disk1 mnt/disk

Client’s Mount Point nfs/servername/disk1

Make Directory /nfs/servername/disk1

Mount nfs/servername/disk1 to mnt/disk1

config.sys

Tag = LINK

/nfs/servername/disk1/editor/usr/local/
lib/editor.dict

/usr/local/lib/editor.dict

Create Symbolic Link:
/usr/local/lib/editor.dict –> nfs/
servername/disk1/editor/usr/local/lib/
editor.dict

A

B

C

D

E

F

G

H

I

J

K

~

K

Fig. 4. (Continued)

Software Installation Programs and Headaches. Most installation programs expect the code to be installed on the machine from
which it is run and don’t embrace the concept of remote access. Good installation programs allow you to change the default
installation location and log every step they take, and the friendliest programs place all files under a user-specified location.
Bad installation programs silently tread in certain system areas by adding user accounts, modifying boot scripts, and
changing the system configuration. Bypassing installation programs, tracking down all the changes they made, and rewriting
processes to duplicate the installation on client machines is the most time-consuming part of installing new software.

Read-only Environment. Ideally, the application server’s disks should be mounted read-only. Unfortunately, some applications
require write access to shared files, so we use read-write NFS mounts. However, application directory permissions are kept
tight so that users are not able to write to the server.

File Ownership Conflicts. Occasionally, two different application programs will both try to “own” the same file. I first
encountered this with two Lotus applications I was installing: AmiPro/UX and Lotus Notes/UX. Both versions came with an
/opt/lotus/bin/lpconfig file and the files were not identical. Normally, the version a client receives depends on the order in which
the two software packages are installed. If AmiPro is installed last, a client will run AmiPro’s version of the lpconfig file. If
Lotus Notes is installed last, the client will run the Notes version.

Inconsistency and Supportability. To ensure that all users, no matter which software package was installed, used the same
application versions, some rearranging was necessary. I installed the Lotus applications mentioned above on the application
server into their own separate directories. Next, I copied all duplicate files to a third directory, using the version of the files
that came with AmiPro. Finally, I modified the configuration files for both AmiPro and Lotus Notes so that clients would link
to these duplicate files in the common directory.

This fix allowed the complete AmiPro and Lotus Notes products to be installed and available. If a problem arises with any of
the common files, it’s easy to change the file in one place and make sure the fix reaches everyone.

Summary
Overall, the application installation process has been a great success. Users are running consistent versions of applications,
sharing centrally managed licenses, and no longer choosing to be part of a cluster simply because of the software available
on that cluster. Application providers are able to make modifications in one location accessed by everyone. The application
server contains no user accounts, runs very few processes, and is a fairly well-behaved I/O-dedicated machine. Unlike a
cluster, the server can suffer occasional downtime without bringing down client systems.

Article 9 June 1996 Hewlett-Packard Journal 7

We still run clusters, and the application server works in that environment as well. But the clusters are smaller and they are
being implemented for the right reasons—not because of application availability. Many users are choosing standalone
workstations, where they are allowed greater flexibility to install experimental versions of code or to use as much swap and
disk space as they like without impacting other users.

References
1. Hewlett-Packard Journal, Vol. 39, no. 5, October 1988, pp. 6-50.
2. J. Lees, “Sharing Local Software on a Network,” The Journal for UNIX System Administrators, Vol. 3, no. 4,

July/August 1994, pp. 48-69.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93 branded products.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited in the UK and other countries.

Lotus is a U. S. registered trademark of Lotus Development Corporation.

� Go To Next Article
� Go Table of Contents
� Go To HP Journal Home Page

http://www.hp.com/hpj/jun96/ju96a10.htm
http://www.hp.com/hpj/jun96/tc-06-96.htm
http://www.hp.com/hpj/journal.html

