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A Normalized Data Library for Prototype

Analysis

The goal was that each analysis and display tool to be included in
the prototype analyzer should be designed and written only once.
Therefore, the data library is designed to normalize the variety of
basic logic analyzer data types and the variety of postacquisition
data types generated by various analysis tools and to present this
data to other analysis and display tools in a standard format.

by Mark P. Schnaible

Early in the design of the HP 16505A prototype analyzer we realized we needed a new library for storing and retrieving logic
analyzer data if we were going to meet our project goals. We needed to duplicate the results of hundreds of software
engineer-years of effort in the HP 16500A/B logic analysis system and measurement modules. We also had to lay the
groundwork to meet the requirements of our prototype analyzer vision.

Understandably, we did not want to allocate enough people to meet the first challenge for the duration of our relatively short
schedule. However, looking at where the original time was spent led to some insights. In the original HP 16500A/B system,
effort had to be duplicated for each logic analyzer plug-in card introduced. That is, for each card, the lister, waveform, chart,
and other software modules needed to be rewritten. Some code leveraging took place, but we did not come close to
complete code reuse. The different ways in which the analyzer cards present data to the software (largely because of
differing memory layouts) had much to do with this lack of reuse. Out of this observation came the design goal that each
analysis and display tool to be included in the prototype analyzer should be designed and written only once. This meant that
our library needed to handle the variety of basic logic analyzer data types as well as accommodate the variety of
postacquisition data types that our envisioned analysis tools would generate, and present this data to other analysis and
display tools in a normalized format. Fig. 1 shows the reduction in the dimensions of the coding effort we hoped to attain
because of this library. It also shows that we would have automatic commonality of feature sets across acquisition modules.
Previously, some features for a new logic analyzer card were not present at the initial release of that card.

Several other design goals emerged that would allow us to meet our challenges:

� Retrieval time for analysis and display tools to access the data should be minimized. In the HP 16500A/B
environment, the acquired data is examined in typically one display per acquisition. In the prototype analyzer
environment, the goal was to encourage data exploration and to view and analyze acquisitions with several
tools. We wanted to permit users to examine data simultaneously with the same view in different locations and
with different views in the same location. These use models led to multiple accesses of the same data, in
contrast with the HP 16500A/B model of a single view of data in a single location. Fig. 2 shows the equivalent
prototype analyzer graph of an HP 16500A/B use model while Fig. 3 shows a prototype analyzer graph with the
multiple-view, multiple-location use model.

� Storage space for acquired data should be minimized. Given the potential size of some logic analyzer
acquisitions (�40M bytes), undue expansion of the data was unacceptable. As always, however, there exists
the trade-off between minimized retrieval time and minimized storage space.

� The storage mechanisms used by the library should be completely decoupled from application or client
modules. That is, changing the way data is stored should not affect any lines of client code. Examples of client
code include the tools that analyze and display the acquisition data such as the lister, waveform, chart,
distribution, and pattern filter tools.

� The interface to the library should be a “natural” C++-style application programming interface. No new style of
programming should be introduced that would be different from normal C++ syntax.

� The library should provide a layer of memory management over the acquired data. Again, the possibility of very
large data sets makes it vitally important not to leak these huge memory chunks or provide stale pointers to
nonexistent data. This goal is made more difficult by the potential complexity of graphs possible in the
prototype analyzer. Fig. 3 shows that there may be many analysis and display tools examining and viewing the
data simultaneously. All of these references to the data must be handled properly to prevent large memory
leaks.

� Finally, time correlation between different sets of data or analyzer acquisitions must be possible. This
requirement makes it possible for users to examine their systems on several different hierarchical levels
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Fig. 1. (a) In the HP 16500A/B logic analysis system coding model, tool software had to be rewritten for each

plug-in card. (b) In the HP 16505A prototype analyzer coding model, data is normalized immediately after

acquisition and is available to all tools in a standard format. Thus, the tools had to be coded only once.
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Fig. 2. Prototype analyzer graph of an HP 16500A/B logic analysis system single-view, single-location use model.

concurrently, from looking at the analog nature of a ground pin bouncing to looking at the high-level source
code executing at that moment in time. Time correlation of measurements also makes it feasible to plot one
derived measurement against another derived measurement. Previously nonobvious relationships between
variables may appear as a result of these charts. Simply having the ability to move markers in one view of an
acquisition and watch that location automatically tracked in a different view of the same acquisition is another
benefit of time correlation.
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Fig. 3. Prototype analyzer graph of an HP 16505A prototype analyzer multiple-view, multiple location use model.

Starting with this list of requirements, we searched for any existing libraries that would meet our needs. We examined three
HP internal libraries and one public-domain library. None of these met all of our requirements. Among the reasons we
rejected them were data set size limitations, non-C++ APIs, file-based memory storage, inefficient storage models, inability
to handle the variety of data types, and mismatches between application models.

Data Sets and Data Groups
The visual programming user interface of the HP 16505A prototype analyzer presents users with a left-to-right flow of data
from sources to displays. Lines between the icons represent this flow. The first thing to decide was exactly what kind of
objects move from icon to icon.

One of the first things users do in the HP 16500A/B environment is to define what the analyzer probes are connected to. This
seemed like a natural place to start our definition of the normalized data library. A label entry represents one or more probes
defining a logical value. Typical examples are the logic analyzer probes connected to an address, data, or status bus of a
microprocessor or an oscilloscope probe connected to Vcc, Vss, or a clock signal. The label entry has a name, polymorphic
ordinate data, attributes, and perhaps a database of value-to-symbol mappings associated with it. Fig. 4 shows the class
diagram of a label entry using the Booch notation.1 A logic analyzer or oscilloscope commonly probes several of these label
entries.

If we collect all label entries that share exactly the same sampling information, we have a data set. All of the label entries
from a single logic analyzer acquisition share the same sampling information, so they can be collected into a data set.
Likewise, all of the label entries from a single oscilloscope acquisition share the same sampling information. The data set

1 1
1

11
1

1

1..n

1

Symbol
Attributes

Ordinate
Data

Label Entry

List<Label Entry>

A

Name

Fig. 4. Class diagram of the label entry class using Booch notation.1
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contains a pointer to some polymorphic data representing this sampling or x-axis information. We call this the abscissa data.
The actual abscissa data object varies with the type of acquisition. The data set also contains time correlation information
indicating which other data sets a particular data set can correlate with and indicating their relative trigger times. Another
form of information contained in a data set is called tags. Tags represent the availability of each sample row in a data set.
Tools such as the pattern filter or the sequencing filter can remove lines from a data set based on some pattern of data or a
sequence of data. The memory for these lines is not deleted; the lines are simply marked as not available by these tools.

When we collect one or more data sets for input to a tool, we have a data group. Data groups are the objects that “go along
the wires” of the visual programming graph. A data group is simply a list of data sets and some information indicating the
nature of correlation among the data sets. A data group may contain data sets that have no correlation, time correlation,
state correlation, or both time and state correlation. Each tool can indicate to the system what kind of correlation it requires
incoming data sets to have. Inputs that do not match this criterion cause a warning message to be shown on the display.
Fig. 5 shows the class diagram for data sets and data groups.
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Abscissa Data
As mentioned above, the x-axis information (the abscissa data object contained within each data set) is a polymorphic type
dependent on the type of acquisition or measurement of the data. Fig. 6 shows the class hierarchy of this information. The
abscissa data base class represents a simple numbered sequence of states with one of those states being the trigger state.
This concrete base class is the type used for generic logic analyzer state clocked acquisitions with no time information, that
is, no time tags. Objects of type periodic are used for logic analyzer timing acquisitions as well as oscilloscope acquisitions.
This class stores information about the sample period and exact time at trigger. The time tags class is used for logic analyzer
state acquisitions with time tagging turned on. These tags indicate the exact time for each sample, which may or may not be
periodic. This class is also used for calculated data sets derived from logic analyzer acquisitions. For instance, a series of
setup and hold calculations derived from a timing acquisition will have a time tag for each pair of setup and hold values.
We can save considerable space with this technique because the setup and hold times are sparse compared to the sample
density of the original acquisition.

Ordinate Data
The probed data or calculated data contained in the label entries is also a polymorphic object. The base class of this
hierarchy is an abstract base class called ordinate data which defines the interface for classes derived from ordinate data.
Fig. 7 shows the class hierarchy rooted with ordinate data. Classes derived from ordinate data are analog, states, glitch, and
state count. Other classes can be added to this hierarchy as needed. The analog class contains a polymorphic pointer to the
quantized samples and an object specifying how to convert these quantized values to floating-point values. In the case of an
oscilloscope acquisition, this header contains the formula to convert from quantized samples to voltage. The states class
contains a pointer to some polymorphic data representing the binary values acquired at the logic analyzer probes. The glitch
class contains the same information as the states class as well as a parallel data object indicating the presence of glitches for
each sample. The HP 16550A logic analyzer card is capable of acquiring this type of data. The state count class holds the data
representing the number of states that transpired between acquired or store-qualified states. The trigger systems of HP logic
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analyzers allow users to specify which states to store out of all the states the logic analyzer sees based on some sequence of
events. The state count object holds values that represent the number of states that were not stored.

Analyzer Memory Layout
Our definition of a label entry shows that the data for each label entry is stored with that label and the data for no other label
entry is stored with that label. This contrasts with the HP 16500A/B series of logic analyzer cards in which all of the
acquisition data is stored in one block of RAM. Each time the data for a particular label needs to be retrieved, the bits must
be extracted from this block and packed into a value representing a sample. As Figs. 8 to 10 show, the format of these
blocks of memory differs from analyzer to analyzer.2,3 The data formats in the acquisition cards are designed to be optimally
space-efficient. There is a one-to-one mapping between bits of memory and probe tips so no memory waste occurs. There
are two downsides to this design choice: (1) time must be spent every time a sample needs to be extracted from this block of
memory and (2) the memory layouts are different for each analyzer. For the multiple-view, multiple-location use model of the
prototype analyzer, access time for each sample of data is critical. For code reuse reasons, we need to hide the memory
layouts from client code. Since these acquisition cards were already in production, we had little motivation to alter the way
they presented data to the prototype analyzer. We wanted to minimize the software investment in these finished products.
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Format Specifications for Labels
Fig. 11 shows a partial format specification for the Intel P54C microprocessor. Customers use this dialog to specify which
pins on various pods of logic analyzer probes are connected to different labels. Some labels, such as for an address bus or a
data bus, tend to be probed with contiguous probe tips. However, other labels can be probed with discontinuous pins from
different pods. The exception label (Excptn) in Fig. 11 is an example of this in the P54C specification. Depending on the
complexity of the format specification, the extraction time for these labels can vary greatly. Even for contiguous labels with
widths of 32 or 16 bits such as address or data, considerable time can be spent extracting these values from the monolithic
block of memory.

Fig. 11. Partial format specification for the Intel P54C microprocessor.

For the normalized data library, we decided to extract the data for each label once for each acquisition and store it in its own
chunk of memory. Label entries whose bit widths match the native machine data type widths (8, 16, or 32 bits) are extracted
and stored as arrays of C++-type chars, shorts, or ints. Once these samples have been extracted or normalized, subsequent
retrievals are simply array lookups. All labels that have non-native widths are combined into a block of bytes. Before the
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values are inserted into this block, however, any discontinuity in the ordering of the bits is removed to speed later retrievals.
Some space inefficiency can result from this technique. The total possible bit wastage is:

��� non-native widths�mod 8� � acquisition depth.

We make this trade-off to provide faster access times to the data. Data drivers for each logic analyzer module supported are
responsible for normalizing the data. These drivers can be arbitrary about choosing data types because they know the
memory layouts of the cards and the specific widths of labels. Fig. 12 shows the class diagram of the ordinate data types
with the various integral data types.
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Fig. 12. Class diagram for the ordinate data types (top) with the various integral data types.

Accessing the Data
Once we have stored the data in a normalized format, we need methods to access the data. A study of existing code and an
analysis of how future tools might need to access the data showed that retrieval tended to be very sequential in nature. If we
picture an acquisition as a matrix of data, with rows representing samples or time and columns representing the various
labels, two retrieval styles emerge: row major and column major. Tools that use the row major style want to examine all of
the labels for a certain sample before they proceed to the next sample. The lister, pattern filter, and sequencing filter use this
style. Tools that use the column major style look at all samples of a particular label or column before they look at the next
label. Waveform drawing, charting, and histogramming tools access the data this way.

A programming idiom that supports this sequential nature of accessing data is called an iterator.4 We defined classes for
iterating over data contained in the abscissa data class hierarchy as well as data contained in the ordinate data class
hierarchy. Fig. 13 shows the abscissa-itor class hierarchy and Fig. 14 shows the ordinate-itor class hierarchy.

Both diagrams show that there is a one-to-one correspondence between data types and iterators over those data types. Since
we don’t want client code to know how the data is stored, we need some way to hide this information from clients while still
providing them with a way to get at the data. We use the letter/envelope programming idiom to accomplish this.5 Clients
construct an envelope object (general abscissa-itor and general ordinate-itor in the diagram), which can then ask the data
to construct an iterator over itself. Clients never have to know what kind of data is being accessed. The envelope and letters
are derived from a common base class which defines the interface for the iterators. The envelope serves as a forwarding
object to the real iterator, the letter. The iterators have an orthogonal interface for data retrieval and iterator positioning.
There are methods for looking at the next and previous data elements (which then alter the position of the iterator), methods
for peeking at the next and previous data elements (do not alter the position), methods for querying and setting the position
of the iterator, and methods for testing forward and backward iterator exhaustion. Multiple iterators can be constructed to
look at the same data; this would be the case in a prototype analyzer graph that takes advantage of the multiple-view,
multiple-location use model. Iterators are declared so that they can only access the data. We provided no iterator methods
that would modify the data.
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We also defined an iterator that is a combination of an abscissa-itor and an ordinate-itor. The data-itor retrieves pairs of
values representing the value of a label and the sample or time at which it occurred. In addition to the orthogonal interface
described above, this iterator also provides methods to report the value and location of the next or previous change in the
ordinate data. These methods are useful for waveform drawing algorithms.

Row major iteration over multiple correlated data sets is aided by group abscissa iterators. These iterators examine a list of
abscissa-itors (one for each data set in the data group) and return the next or previous x-axis value and a list of identifiers
that select the data sets from which that value comes. These iterators come in handy, for example, in visual programming
graphs that have multiple analyzers fanning in to a single analysis tool (Fig. 15). For a lister display that has multiple data
sets merged (Fig. 16), we need to show the data from the various analyzers interleaved in time as they were actually
sampled.

Fig. 15. A visual programming graph with multiple analyzers fanning in to a single analysis tool.

Memory Management
With the increasing acquisition depth and width of HP logic analyzers, data sets can have sizes greater than 40M bytes. In the
prototype analyzer environment, users can be examining these data sets in several locations with several views. Having so
many references to the data can easily lead to memory management problems, particularly nasty among them being memory
leaks and pointers to stale memory. A memory leak occurs when a process no longer has any references to a chunk of
memory that has been allocated from the heap of memory available to the process, and thus there is no way to return the
memory back to the heap. As an application leaks more and more memory, less is available to that process and eventually
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Fig. 16. A lister display with multiple data sets fanned in. The data sets from the

various analyzers are interleaved in time as they were actually acquired.

the application will halt because of an out-of-memory error. Leaking very large blocks of memory will cause this condition to
occur sooner. Pointers to stale memory result when the application does return a chunk of memory to the heap but keeps
other pointers to that same memory, which the application no longer owns.

The normalized data library uses the reference counting idiom5 to overcome these potential problems. Passing a data group
from one tool to the next creates a copy of the data group. These copies result in incrementing reference counts to the
individual blocks of data contained in the abscissa data and ordinate data object hierarchies. Defining an iterator over this
data also constructs a copy of the data, which causes a reference count increase. Destroying the data (by deleting a tool) or
deleting iterators causes these copies to be deleted, which then causes the reference counts to be decremented. When the
reference counts reach zero it is safe to release the memory back to the heap. At that time we are sure no other references
to that memory exist. The normal execution of a tool includes these steps:

� Delete the old output data group of the tool.

� Delete the old input data group of the tool.

� Construct a new input data group for the tool by merging all inputs.

� Execute the tool (delete old iterators and construct new ones).

� Construct a new output data group for the tool.

We defined our iterators such that they do not modify the underlying reference counted data. In cases where tools need to
modify the reference counted data (such as pattern filters which modify the tags object in a data set), we use the copy-on-
write optimization: operations that would change the data cause a completely new copy of the data to be created and cause
reference counts to be adjusted accordingly.

Case Study
During the design of the normalized data library for the prototype analyzer we made a conscious decision to incur the
overhead of normalizing the acquisition data immediately after transferring the data from the HP 16500B mainframe to the
prototype analyzer. This happens once per acquisition and before any tools examine the data. We do this immediately to
optimize the response time of postacquisition data exploration. For very large acquisitions, however, this normalization time
can be considerable.
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At the initial release of the prototype analyzer, one customer was making such an acquisition with 1M-byte-deep HP 16555A
logic analyzer cards probing an Intel P6 microprocessor and a PCI bus. We found the normalization time to be too large in
this case—the acquisition data exceeded 30M bytes. After studying where our code was spending time during the
normalization process, we optimized certain sections of code as well as significantly changed the way in which the data
driver for that module stored the data in the object hierarchies. After our optimizations, we reduced the normalization time
by a factor of ten. More important, we did not need to change a single line of client code (lister, waveform, chart, etc.) to
take advantage of this optimization.

Conclusions
At the introduction of the HP 16505A prototype analyzer we met most of our project goals. We duplicated almost all of
the HP 16500B functionality for the HP 16550/4/5/6A, HP 16517A, and HP 16532/3/4A acquisition cards and added several
significant features such as pattern filtering and multiple-view, multiple-location data exploration. The ability to write a
single dynamically loaded shared library for each analysis and display tool that would work for any of the data retrieved
from the acquisition cards was prominent among the reasons we met our goals. We continue to create new analysis and
display tools that will help our customers solve their most difficult design problems.
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