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Overview of Code-Domain Power, Timing,

and Phase Measurements

Telecommunications Industry Association standards specify
various measurements designed to ensure the compatibility of
North American CDMA (code division multiple access) cellular
transmitters and receivers. This paper is a tutorial overview of the
operation of the measurement algorithms in the HP 83203B CDMA
cellular adapter, which is designed to make the base station
transmitter measurements specified in the standards.

by Raymond A. Birgenheier

In 1994, the Telecommunications Industry Association (TIA) released the IS-95 and IS-97 standards developed by the TIA
TR-45.5 subcommittee. These standards ensure the mobile-station/base-station compatibility of a dual-mode wideband
spread spectrum system—the North American CDMA (code division multiple access) cellular telephone system.1 CDMA is a
class of modulation that uses specialized codes to provide multiple communication channels in a designated segment of the
electromagnetic spectrum.  The TIA IS-95/97 standards specify various measurements that must be made on CDMA base
station and mobile station transmitters and receivers to ensure their compatibility. The HP 83203B CDMA cellular adapter
for the HP 8921A Option 600 cell site test system is designed to make the base station transmitter measurements specified in
the standards.  The HP 83203B algorithms provide accurate measurements of code-domain power, time, frequency, and
phase.  This paper is a tutorial overview of the operation of the measurement algorithms in the HP 83203B.

The HP 83203B measurement algorithms provide a characterization of the code-domain channels of a CDMA base station
transmitter.  One of the measurements, called code-domain power, provides the distribution of power in the code channels.
This measurement can be used to verify that the various channels are at expected power levels and to determine when one
code channel is leaking energy into the other code channels. The crosscoupling of code channels can occur for many
reasons. One reason is a time misalignment of the channels, which would negate the orthogonal relationship among code
channels.  Another reason may be the impairment of the signals caused by nonideal or malfunctioning components in the
transmitter. To determine the quality of the transmitter signal, a waveform quality factor, ρ, is measured. It is the amount of
transmitter signal energy that correlates with an ideal reference signal when only the pilot channel is transmitted.

Another set of measurements, called code-domain timing and code-domain phase, determine how well-aligned the code
channels are in time and in phase. The parameters measured are time offsets and phase offsets of active code channels
relative to the pilot channel (code channel 0).

To make these measurements to the precision specified in the IS-97 standard, it is necessary to establish the time origin and
the carrier frequency of the signal to be measured.  The HP 83203B provides these measurements.  Another measurement
that may be useful when diagnosing the causes of poor transmitter signal quality is the carrier feedthrough in the transmitter
signal.  The effect of carrier feedthrough will also be seen when measuring code-domain power.

This paper presents (1) the general concepts of CDMA signals and measurements, (2) the signal flow of the measurement
algorithms, (3) the specifications from the IS-97 standard and performance predictions for the measurement algorithms
based on mathematical modeling and simulations, and (4) some typical results of measurements made with the HP 83203B.

CDMA Operation
The channel structure for a CDMA base station transmitter is shown in Fig. 1. There are 64 code channels, corresponding to
64 Walsh functions, each 64 chips long.* To see how the Walsh functions provide the channelization, we will consider a
hypothetical example of four code channels produced by the four orthogonal Walsh functions shown in Fig. 2.  The sums
shown in Fig. 1 are modulo-2, as defined in Table I. They are appropriate when a 0,1 representation is used for binary
numbers and are equivalent to ordinary multiplication when a 1,–1 representation is used.  The Walsh functions use
nonreturn-to-zero (NRZ) values of 1 and –1 to represent binary numbers.

* The chip interval is the clock period of the spreading code used in a spread-spectrum system. In this paper, a chip corresponds to one binary digit of the
pilot pseudonoise sequences shown in Fig. 1.
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Table I
Modulo-2 Sum (XOR)

� 0 1

0 0 1

1 1 0

The Walsh functions are said to be orthogonal because the inner product of wi(t) and wj(t) is:

�
4

0

wi(t)wj(t)� 4,

� 0,

i� j

i� j

(1)

that is, the inner product of two distinct Walsh functions is zero.

The orthogonality property produces the channelization, as we can see by considering the transmission of a binary digit
(bit) that is four chip intervals long on channel 1.  If the bit is represented by ±1, then at the transmitter and, ideally, at the
receiver the bit is represented by ±w1(t).  At the receiver, an operation equivalent to equation 1 is performed on ±w1(t)wi(t)
for each channel for i = 0, 1, 2, 3. This operation produces the result:

�
4

0

w1(t)wi(t)� 4,

�

i� 1

i� 1

(2)

0,

�

Therefore, we see that the bit can be detected on channel 1, but it does not appear on channels 0, 2, or 3.

The 64 Walsh functions used for the channelization shown in Fig. 1 are represented by 64-bit words that are rows (or
columns) of a 64�64 Hadamard matrix.  The Hadamard matrix is orthogonal (i.e., rows or columns are orthogonal) and can
be generated by the following simple algorithm:

� A 2�2 Hadamard matrix is defined as:
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Fig. 2. Four orthogonal Walsh functions.

H2 � �00 0
1
�. (3)

� A 4�4 Hadamard matrix is generated as:

H4 � �H2

H2

H2

H2
� ���
�

0
0
0
0
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0
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0
0
1
1

0
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0
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. (4)

� In general, a Hadamard matrix H2n is generated from a Hadamard matrix Hn by:

H2n � �Hn

Hn

Hn

Hn
�. (5)

The inner product of two rows of Hn is obtained by the modulo-2 summing of the two rows, element by element, and
counting the difference between the number of 0s and 1s, where the modulo-2 sum is the XOR operation defined in Table I.
For example, to obtain the inner product of rows 1 and 2 of H4, we perform the following operation:

0 0 0 0

� 0 1 0 1 (6a)  

0 1 0 1 ⇐ Inner product = number of 0s
 minus number of 1s = 0

If a 1,–1 representation is used for the binary numbers, then the inner product given by equation 6a is simply:

1 1 1 1

× 1 –1 1 –1 (6b)  

1 –1 1 –1 ⇐ Inner product = sum = 0.

Fig. 3 shows an example of the pseudonoise encoding shown in Fig. 1 for code channel 1. The input bits, denoted by di, are
added (modulo-2) to the Walsh function w1 and then to the I-channel and Q-channel pseudonoise sequences ipn and qpn. The
resulting modulo-2 sums are converted to ±1 for Ik and Qk, where +1 represents binary 0 and –1 represents binary 1.  The
discrete time signals Ik and Qk provide the inputs to the transmit filters.  The outputs of these filters are the superposition of
pulses centered at discrete times tk, k = ..., 0, 1, 2, ..., as illustrated in Fig. 4.

If the pulse for Ik or Qk equals zero when t = ti, i�k, then the pulses at the outputs of the transmit filters do not interfere
with each other at discrete times tk, k = ..., 0, 1, 2, ... and we say the transmit filters introduce zero intersymbol interference.
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Fig. 3. Pseudonoise encoding.
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Fig. 4. Transmit filter output.

The transmit filters illustrated in Fig. 4 introduce zero intersymbol interference.  However, the transmit filter specified in the
IS-95 standard does introduce intersymbol interference.  Moreover, the base station transmitter specified in the standard
must incorporate an all-pass phase preequalizer, which produces an asymmetric transmitter pulse response.

The reason for the I-Q structure shown in Fig. 1 will become clearer after we consider code-domain signals.

Code-Domain Signals (Forward Link)
Any sinusoidal carrier with amplitude and phase modulation can be written mathematically as:

X(t)� A(t)cos[�ct��(t)] (7)

where ωc = 2πfc (fc is the carrier frequency in Hz), A(t) is the instantaneous amplitude, and Φ(t) is the instantaneous phase.

Using the trigonometric identity cos(θ+ϕ) = cosθcosϕ – 
sinθsinϕ, equation 7 can be rewritten as:

X(t)� A(t)cos�(t)cos�ct – A(t)sin�(t)sin�ct

� I(t)cos�ct – Q(t)sin�ct,
(8)

where the in-phase component of the signal (the component multiplying the carrier cosωct) is:

I(t)� A(t)cos�(t), (9)

and the quadrature component (the component multiplying the quadrature carrier –sinωct) is:

Q(t)� A(t)sin�(t). (10)

Using Euler’s identity, ejθ = exp(jθ) = cosθ + jsinθ, we can write:

I(t) � jQ(t)� A(t)ej�(t). (11)

I(t)+jQ(t) is called the complex envelope of the modulated carrier and is represented as a rotating phasor as shown in Fig. 5.
The tip of the rotating phasor moves as a function of time forming the locus referred to as the signal trajectory.
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Fig. 5. The complex envelope of the modulated carrier is represented as a rotating phasor. The locus of the tip of the

phasor is called the signal trajectory.

The forward link of the CDMA system uses quadrature phase-shift keying (QPSK) modulation.  First, we will consider the
case in which only the pilot signal is present. In this case, if no intersymbol interference is introduced by the transmit filter,
the signal trajectory passes through four discrete points separated by multiples of 90 degrees in the I-Q plane as shown in
Fig. 6. These four points on the I-Q diagram are referred to as the signal constellation for the QPSK modulation.

The coordinates of these points represent the four possible values of a pair of bits.  As the signal moves along its trajectory,
the coordinates at discrete time tk represent the pair of bits transmitted at this time. The example signal trajectory
presented in Fig. 6 is for the first eight pairs of bits of the pilot sequences with corresponding times tk, as given in Table II.

Table II
First 8 Pairs of Bits of Pilot Sequences

k 1 2 3 4 5 6 7 8

ipn –1 1 –1 1 –1 1 1 –1

qpn –1 1 1 –1 –1 –1 –1 1

Now we will consider a case in which the pilot (code channel 0) and code channel 1 are transmitted simultaneously.  In this
case, the transmitter signal can be represented as:

X(t) � A0(t)cos��ct ��0(t)�

� A1(t)cos��ct ��1(t)� ,
(12)

where A0(t) and Φ0(t) represent the amplitude and phase modulation introduced by the pilot and A1(t) and Φ1(t) represent
the amplitude and phase modulation introduced by code channel 1.  Using the trigonometric identity cos(θ+ϕ) = cosθcosϕ –
sinθsinϕ, we can write equation 12 as:

X(t) � �A0(t)cos�0(t) � A1(t)cos�1(t)�cos(�ct)

– �A0(t)sin�0(t) � A1(t)sin�1(t)�sin(�ct)

� I(t)cos(�ct) – Q(t)sin(�ct),

(13)

where

I(t) � A0(t)cos�0(t) � A1(t)cos�1(t) (14)

and

Q(t) � A0(t)sin�0(t) � A1(t)sin�1(t). (15)

From equations 14 and 15, it is clear that since

I(t) � I0(t) � I1(t) and Q(t) � Q0(t) � Q1(t), (16)

I(t) and Q(t) are simply the superposition of the corresponding components produced by the pilot and code channel 1.
Therefore, we can superimpose I-Q diagrams.

To simplify the description at this point, we will consider the code channels produced by four orthogonal Walsh words each
four chips long, as shown in Table III.
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Table III
Orthogonal Walsh Words

w0: 1 1 1 1

w1: 1 –1 1 –1

w2: 1 1 –1 –1

w3: 1 –1 –1 1

For illustrative purposes, we will assume that the peak magnitude 2� a0 � �A0�tk��peak
 of the pilot (code channel 0) is 0.8 2�

and the magnitude 2� a1 � �A1�tk��peak
 of the signal for code channel 1 is 0.6 2� , so that the root-sum-square of the pilot and

code channel 1 signals is:

0.82 � 0.62� � 1.0 . (17)

In this case, the pilot signal has the trajectory shown in Fig. 6, except that the signal coordinates are (±0.8, ±0.8) instead of
(±1, ±1).

(–1, 1)
Q

(1, 1)

(–1, –1)
(1, –1)

I

t

t   , t   , t

3      8t   , t

t   , t

2

1      5
4      6      7

Fig. 6. Example of a signal constellation (points) and a signal trajectory.

To determine the trajectory produced by code channel 1, we must consider multiplying Walsh word w1 by data bits.  For our
example, we will assume data bits for two Walsh function intervals: d = 1, –1. We obtain values for I1 and Q1 as presented in
Table IV.

Table IV
Calculation of I1 and Q1

              Time t1 t2 t3 t4 t5 t6 t7 t8

ipn –1 1 –1 1 –1 1 1 –1

qpn –1 1 1 –1 –1 –1 –1 1

w1 1 –1 1 –1 1 –1 1 –1

w1ipn –1 –1 –1 –1 –1 –1 1 1

w1qpn –1 –1 1 1 –1 1 –1 –1

d1 1 . . . . . . . . . . . .  –1 . . . . . . . . . . . .

d1w1ipn –1 –1 –1 –1  1 1 –1 –1

d1w1qpn –1 –1 1 1  1 –1 1 1

a1 0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I1 = a1d1w1ipn –0.6 –0.6 –0.6 –0.6 0.6 0.6 –0.6 –0.6 –0.6

Q1 = a1d1w1qpn –0.6 –0.6 0.6 0.6 0.6 –0.6 0.6 0.6 –0.6

First, the ipn and qpn sequences are multiplied by Walsh word w1  = (1  –1   1  –1) repeated every 4 chips.  This result is then
multiplied by the data sequence d1 = 1 for the first 4 chips and d2 = –1 for the next 4 chips, and finally, the two sequences are
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multiplied by the amplitude a1 = 0.6. Values of –0.6 were arbitrarily added for time t9 to be used later to illustrate the effect
of time offset. The resulting sequences for I0,Q0 and I1,Q1 are shown in Table V and their I-Q diagrams are shown in Fig. 7.

Table V
Superposition of I-Q Sequences

Time t1 t2 t3 t4 t5 t6 t7 t8

I0 –0.8 0.8 –0.8 0.8 –0.8 0.8 0.8 –0.8

Q0 –0.8 0.8 0.8 –0.8 –0.8 –0.8 –0.8 0.8

I1 –0.6 –0.6 –0.6 –0.6 0.6 0.6 –0.6 –0.6

Q1 –0.6 –0.6 0.6 0.6 0.6 –0.6 0.6 0.6

I –1.4 0.2 –1.4 0.2 –0.2 1.4 0.2 –1.4

Q –1.4 0.2 1.4 –0.2 –0.2 –1.4 –0.2 1.4

In the above example, we considered the situation of a CDMA signal consisting of the pilot and code channel 1 and showed
that we could obtain the I-Q diagram for the composite signal simply by superimposing the I-Q diagrams for the individual
signals.  For our example of two signals, the two 4-point I-Q diagrams produced an 8-point diagram for the composite signal.
This principle of superposition can be applied to any number of code channels and provides a convenient geometric way of
constructing and visualizing signals.  For example, if we consider three code channels with signal amplitudes of a0, a1, and
a2, then we obtain an I-Q diagram with coordinates (x,y) in which x and y take on the eight values ±a0±a1±a2 to produce a
signal constellation with 16 points.  We must keep in mind that the above discussion applies only for the condition of zero
intersymbol interference.

Signal Acquisition (Timing and Frequency Estimation)
To perform the measurements of the CDMA signals, it is necessary to estimate the precise carrier frequency so that the
signal to be measured can be converted to baseband, that is, so it can be represented in terms of an I-Q signal trajectory as
discussed above.  Furthermore, it is necessary to determine the timing of the signal to be measured relative to the zero time
reference of the pseudonoise sequences ipn and qpn which are used to spread the spectrum of the transmitter signal.  The
estimation of timing and carrier frequency are discussed in this section.

Suppose that the transmitter signal to be measured has an unknown frequency error ∆ω, unknown phase θ0, and an
unknown time delay τ0, so that after down-conversion to baseband, the signal available for measurement can be represented
in the form of equation 7 with ωc replaced with ωc+∆ω, t replaced with t–τ0, and a phase term θ0 added.  That is, the signal
to be measured can be represented as:

X(t–�0) � A(t– �0)cos[(�c ��)(t–�0) �(t–�0) �0],� � � (18)

which can be written, using the trigonometric identity cos(θ+ϕ) = cosθcosϕ – sinθsinϕ, as:

X(t–�0) �

A(t–�0)cos[��t – (�c ��)�0 ��(t– �0) �0]cos�ct

– A(t–�0)sin[��t – (�c ��)�0 �(t–�0)� �0]sin�ct .

�

� �

� (19)

From equation 19, we obtain the in-phase and quadrature components as:

Ix(t) A(t–�0)cos[��t (�c ��)�0 �(t–�0) �0]� (20)��–�

and

Qx(t) A(t–�0)sin[��t (�c ��)�0 �(t–�0) �0]� (21)��–�

Using Euler’s identity, ejθ = exp(jθ) = cosθ + jsinθ, we can write the complex envelope as:

Y(t) � Ix(t)� jQx(t)

� A(t–�0)exp�j[��t–(�c ��)�0 �(t– �0) �0]�,�
(22)

� �

from which we see that the baseband signal is a rotating phasor with magnitude A(t–τ0) and phase [∆ωt – (ωc+∆ω)τ0 +
Φ(t–τ0 ) + θ0] as shown in Fig. 8.

We see that if τ0 � 0 but ∆ω = 0, then the amplitude A(t–τ0) and phase Φ(t–τ0) are delayed versions of A(t) and Φ(t) and a
phase shift of –ωcτ0 +θ0 is added.  Therefore, the effect of the time delay is simply a rotation of the I-Q diagram by an angle
of –ωcτ0 +θ0 and a change of τ0 in the times at which the signal trajectory passes through the constellation points.  When
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Fig. 7. Signal constellation and trajectory for (a) pilot channel, (b) code channel 1, and (c) the sum of the pilot 

channel and code channel 1.

∆ω � � 0, the frequency error adds an additional phase shift of –∆ωτ0 and a constant-rate phase rotation of ∆ωt.  The result of
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Fig. 8. Complex envelope of the baseband signal.

the constant-rate phase rotation will, in general, be that the signal trajectory will no longer pass through discrete points, so
the I-Q diagram will not resemble its counterpart for zero frequency error.

The functions used to estimate τ0, ∆ω, and θ0 can be described by considering a pilot reference signal given as:

S	t– �R,�R
 � A0	t– �R
exp�j��Rt ��0	t– �R
�� , (23)

in which A0(t) and Φ0(t) are the instantaneous amplitude and phase of the complex envelope corresponding to the pilot
only, τR is a variable time delay, and ωR is a variable frequency.  Using the observable baseband signal Y(t) given by equation
22 and the reference signal given by equation 23,  the correlation function for these two signals is:

P	�R,�R
 ��
k

Y	tk
S * 	tk–�R,�R
 . (24)

The sample interval tk – tk–1 used here is different from that used previously and, in general, would be a fraction of the chip
interval.  The magnitude of P(τR,ωR) could be maximized with respect to τR and ωR to determine the estimates �^0  and ��^  of
τ0  and ∆ω. However, a normalized version of the squared magnitude of this function is used to facilitate the search strategy
for finding �^0. �^0 is found by forming the function

�P	�R, 0
�
2

�
k

�S	tk– �R, 0
�
2�

k

�Y	tk
�
2

(25)

and finding the value τR = �^0 for which this function is maximum.

Maximizing equation 25 corresponds to maximizing the correlation between the observable baseband signal and an ideal
reference signal for the pilot only.  Usually, the observable baseband signal will consist of the superposition of a number of
code channels. However, since the correlation between the pilot and the other code channels is small, the maximization of
equation 25 provides a good initial estimate of τ0.

P(τR, 0) is sensitive to frequency error ∆ω, which limits the range of ∆ω for which equation 25 can be used.  We can obtain
an expression for the frequency response of P(τ0,0) by setting

Y(t) � S	t– �0,��
 (26)

to obtain

P	�0, 0
 ��
k

A2
0	tk–�0
ej��tk . (27)

To simplify the evaluation of this expression, consider sampling at points for which the signal trajectory passes through the
constellation points of the pilot, so that A2

0	tk–�0
 is constant. In this case, the magnitude of P(τ0,0) is:

�P	�0, 0
� �
sin	T

2
��


sin	 T
2K

��

, (28)

where T is the length of the data record used to calculate P(τ0,0) and K is the number of samples in the data record.

From the sketch of P(τ0,0) in Fig. 9, we see that P(τ0,0) = 0 for ∆ω = 2π/T.  In devising the search strategy for finding �^0, it
was assumed that frequency errors would be less than ±π/T. Therefore, reliable estimates of τ0 can be obtained only if

|��| � �

T
. (29)

After the value of �^0 is determined, we obtain an estimate, ��^ , of ∆ω from the discriminator formed as the ratio of the
difference over the sum of �P	�^0,��0
�  and �P	�^0, –��0
� :
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��
^ � �

T

�P��^0,��0�� – �P��^0, –��0��
�P��^0,��0�� � �P��^0, –��0��

, (30)

where ∆ω0 = π/T. The formation of this discriminator is illustrated in Fig. 10, where P��^0,��0� is shown by the upper dashed
curve, –P��^0, –��0� is shown by the lower dashed curve, and the discriminator curve, ��^ T/π, is shown by the solid curve.
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Fig. 9. The correlation function P(t0,0) as a function of frequency error.

The function given by equation 30 is a linear function of ∆ω for |∆ω| < π/T and provides a reasonably good initial estimate of
the frequency error when a significant percentage (on the order of 10% or more) of the total transmitter power is contained
in the pilot channel.

An estimate of the transmitter phase is obtained from the phase of the correlation function with τR  =  �^0 and ωR  = ��^ :

�
^

0 � tan–1��{P��^0,��^ �}
�{P��^0,��^ �}

� (31)

where �{z} and ℑ {z} are the real and imaginary parts of z, respectively.

Fig. 10. Formation of the discriminator of equation 30.   is shown by the upper dashed curve,      is

shown by the lower dashed curve, and the discriminator curve,      , is shown by the solid curve.
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Because of the weak correlation between the pilot channel and the other code channels, equations 25, 30, and 31 provide
good initial estimates of τ0, ∆ω, and θ0.  The estimates of these parameters are refined after the intersymbol interference has
been removed by the complementary filter discussed later in this article. Further refinement of these parameters is achieved
when estimating time and phase offsets of the code channels relative to the pilot channel.  The estimation of the offset
parameters is discussed later in this article.

Code-Domain Power Spectrum
The code-domain power spectrum is given in terms of the coefficients ρi, where ρi is defined as the fractional part of the
transmitter power contained in the ith code channel.  The first step in calculating the code-domain power spectrum is to
multiply I(tk) and Q(tk) by ipn and qpn.  The results of these calculations are shown in Table VI.
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Table VI
Despreading of Ik and Qk

1st Walsh function
interval

2nd Walsh function
interval

Time t1 t2 t3 t4 t5 t6 t7 t8

I(tk) –1.4 0.2 –1.4 0.2 –0.2 1.4 0.2 –1.4

Q(tk) –1.4 0.2 1.4 –0.2 –0.2 –1.4 –0.2 1.4

ipn  –1  1    –1 1 –1 1 1 –1

qpn  –1  1    1 –1 –1 –1 –1 1

ZI = I �ipn 1.4 0.2 1.4 0.2 0.2 1.4 0.2 1.4

ZQ = Q�qpn 1.4 0.2 1.4 0.2 0.2 1.4 0.2 1.4

The code-domain power spectrum is:

i�
1

�
M

k�1

�Rik
�2

�
N

h�1

��M
k�1

ZhkR*
ik�

2

�
N

h�1

�
M

k�1

�Zhk
�2

,ρ (32)

where Zhk is the kth sample of the despread signal in the hth Walsh function interval, Rik is the kth chip of the ith Walsh
function, M is the number of chips in a Walsh function, and N is the number of Walsh function intervals in the measurement
interval. The calculations of ρi, i = 0, 1, 2, 3 for the above example are presented in Table VII (j = � 1� ).

Table VII
Calculation of ρi for the Example

Zhk R0k ZhkR*
0k R1k ZhkR*

1k

h=1 1.4+j1.4 1+j 2.8   1+j   2.8

 ” 0.2+j0.2 1+j 0.4 –1–j –0.4

 ” 1.4+j1.4 1+j 2.8    1+j   2.8

 ” 0.2+j0.2 1+j 0.4 –1–j –0.4

h=2 0.2+j0.2 1+j 0.4    1+j   0.4

 ” 1.4+j1.4 1+j 2.8 –1–j –2.8

 ” 0.2+j0.2 1+j 0.4    1+j   0.4

 ” 1.4+j1.4 1+j 2.8 –1–j –2.8

�
4

k�1

�Rik
�2 � 8

�
2

h�1

�
4

k�1

�Zhk
�2 � 8�1.42� � 8�0.22� � 16

(33)

�
2

h�1

��4
k�1

ZhkR0k�
2

� 6.42 � 6.42 � 81.92 (34)

�0 �
81.92
8(16)

� 81.92
128

� 0.64 (35)

�
2

h�1

��4
k�1

ZhkR1k�
2

� 4.82 � 4.82 � 46.08 (36)

�1 �
46.08
128

� 0.36 (37)
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�2 � �3 � 0 (38)

�0 � �1� �2� �3 � 1.0000 . (39)

Since we selected signal amplitudes a0 = 0.8 and a1 = 0.6, the total signal energy in our measurement interval (two Walsh
function intervals) is proportional to (0.82 + 0.62) = 1.0 and the percentages of signal energy in the pilot and code channel 1,
respectively, are 0.82 = 0.64 and 0.62 = 0.36.  We see, therefore, that the results of this example verify that ρi is the fractional
part of the energy of the observed signal that is contained in the ith code channel.

Errors
Various errors will produce a transmitter signal that does not match the ideal reference signal. These errors will manifest
themselves as a distribution of the transmitter signal energy among the code channels that varies from the ideal distribution.
As mentioned earlier, the transmitter signal may have an unknown time reference and carrier frequency. However, as we
saw, these parameters are estimated so that they can be removed from the signal to be measured.  Therefore, frequency
errors and time delay are compensated to a sufficient degree of accuracy to have minimal influence on the distribution of
code-domain power.

Other types of errors are not compensated. These include signal impairments caused by nonideal components in the
transmitter such as nonideal filters, nonlinearities, gain and phase imbalances, mixer spurs, quantization errors, and others.

Waveform Quality Factor (ρ). A measure of the quality of the transmitter signal is obtained by measuring ρ, defined as:

��

��
k

ZkR*0k�2

�
k

�R0k�
2�

k

�Zk�
2

(40)

where Zk is the kth sample of the despread signal, R*0k = 1–j, and only the pilot is transmitted.  By comparing equations 40
and 32, we see that ρ and ρ0 are similar but not identical.  When ρ0 is calculated, the energy in code channel 0 is found for
each Walsh function interval in the measurement interval and the sum of these energies is obtained. When ρ is calculated,
the energy of the projection onto R*0k = 1–j over the entire measurement interval is obtained. For random type errors,
values obtained for ρ and ρ0 will be essentially equal. However, certain types of errors such as uncompensated frequency
errors will yield different values for ρ and ρ0.

According to equations 32 and 40, a fixed phase difference between the measured baseband signal and the reference signal
will not affect ρ and ρi. This is true because these functions involve the calculation of energies that are insensitive to phase,
that is,

�ej�0 ZR*�2 � �ZR*�2.

Time and Phase Offset Errors. Time offsets and phase offsets of the code channels relative to the pilot channel are errors with
tolerances specified in IS-97.  Offset errors in a particular code channel will cause energy from that code channel to leak
into other code channels and thereby cause a change in the distribution of code-domain power. An example of time and
phase offset errors is considered in this section.

Suppose there are time and phase offsets of channel 1 with respect to channel 0 of ∆τ1 and ∆θ1, respectively.  For illustrative
purposes, we will assume that the pulse response of the transmit filter is triangular, as shown in Fig. 11, so the transmit filter
is considered a linear interpolator of adjacent input values. We will extend our example by considering the effects of offsets
of ∆τ1 = 0.1/Tc, where Tc is the chip interval, and ∆θ1 = 0.1 radian. We compute I1 and Q1 for this case as presented in Table
VIII.
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Table VIII
Calculation of ρi for the Example with Time and Phase Offsets

From timing error (linearly interpolate 90% current value, 10% future value)

Time t1 t2 t3 t4 t5 t6 t7 t8

I1 –0.6 –0.6 –0.6 –0.48 0.6   0.48 –0.6 –0.6

 Q1 –0.6   –0.48   0.6 0.6   0.48 –0.48   0.6     0.48  

From phase error (I1cos0.1 – Q1sin0.1, I1sin0.1 + Q1cos0.1)

I1 –0.5371 –0.5491 –0.6569 –0.5375   0.5491   0.5255 –0.6569 –0.6449

Q1 –0.6569 –0.5375   0.5371   0.5491   0.5375 –0.4297   0.5371   0.4177

I0 –0.8   0.8 –0.8   0.8 –0.8   0.8   0.8 –0.8

Q0 –0.8   0.8   0.8 –0.8 –0.8 –0.8 –0.8   0.8

I –1.3371   0.2509 –1.4569   0.2625 –0.2509   1.3255   0.1431 –1.4449

Q –1.4569   0.2625   1.3371 –0.2509 –0.2625 –1.2297 –0.2629   1.2177

Multiply by ipn and qpn to obtain Z = ZI+jZQ

ZI   1.3371   0.2509   1.4569   0.2625   0.2509   1.3255   0.1431   1.4449

ZQ   1.4569   0.2625   1.3371   0.2509   0.2625   1.2297   0.2629   1.2177

Zhk R0k ZhkR*
0k R1k ZhkR*

1k

 h=1   1.3371+j1.4569   1+j   2.7940+j0.1198   1+j   2.7940+j0.1198  

”   0.2509+j0.2625   1+j   0.5134+j0.0116 –1–j –0.5134–j0.0116

”   1.4569+j1.3371   1+j   2.7940–j0.1198    1+j   2.7940–j0.1198

”   0.2625+j0.2509   1+j   0.5134–j0.0116 –1–j –0.5134+j0.0116

 h=2   0.2509+j0.2625   1+j   0.5134+j0.0116   1+j   0.5134+j0.0116  

”   1.3255+j1.2297   1+j   2.5552–j0.0958 –1–j –2.5552+j0.0958

 ”   0.1431+j0.2629   1+j   0.4060+j0.1198   1+j   0.4060+j0.1198  

”   1.4449+j1.2177   1+j   2.6626–j0.2272 –1–j –2.6626+j0.2272

Zhk R2k ZhkR*
2k R3k ZhkR*

3k

 h=1   1.3371+j1.4569   1+j   2.7940+j0.1198   1+j   2.7940+j0.1198  

”   0.2509+j0.2625   1+j   0.5134+j0.0116 –1–j –0.5134–j0.0116

”   1.4569+j1.3371 –1–j –2.7940+j0.1198 –1–j –2.7940+j0.1198

 ”   0.2625+j0.2509 –1–j –0.5134+j0.0116   1+j   0.5134–j0.0116  

h=2   0.2509+j0.2625   1+j   0.5134+j0.0116   1+j   0.5134+j0.0116

”   1.3255+j1.2297   1+j   2.5552–j0.0958 –1–j –2.5552+j0.0958

”   0.1431+j0.2629 –1–j –0.4060–j0.1198 –1–j –0.4060–j0.1198

”   1.4449+j1.2177 –1–j –2.6626+j0.2272    1+j   2.6626–j0.2272
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From the values obtained in Table VIII, we compute the code-domain power coefficients as follows:

�
4

k�1

�Rik�
2�

2

h�1

�
4

k�1

�Zhk�
2
� 121.1648 . (41)

�
2

h�1

��4
k�1

ZhkR*
0k�

2

� |6.6148|2 � |6.1372– j0.1916|2

� 81.4575 .
(42)

�
2

h�1

��4
k�1

ZhkR*
1k�

2

� |4.5612|2 � |–4.2984 j0.4544|2

� 39.4873 .
(43)

�

�
2

h�1

��4
k�1

ZhkR*
2k�

2

� |j0.2628|2 � |j0.0232|2

� 0.0696 .

(44)

�
2

h�1

��4
k�1

ZhkR*
3k�

2

� |0.2164|2 � |0.2148–j0.2396|2

� 0.1504 .

(45)

�0 �
81.4575

121.1648
� 0.6723 (46)

�1 �
39.4873

121.1648
� 0.3259 (47)

�2 �
0.0696

121.1648
� 0.0006 (48)

�3 �
0.1504

121.1648
� 0.0012 (49)

We note that the timing and phase errors caused some of the energy from code channel 1 to leak into the other code
channels. However, again

�0 � �1 � �2� �3 � 1.0000 . (50)

This condition is always satisfied regardless of the errors introduced to the data sequence Z =ZI+jZQ.

Estimates of Time and Phase Offsets. We saw in the above example that when code channel 1 was offset in time and phase
relative to the pilot channel, errors were introduced that caused the relative energy to increase in code channels 0, 2, and 3
and to decrease in channel 1. To determine the values of the offset errors, the mean squared difference between the
observable data, Z, and an ideal reference signal, R, is minimized.  For the example considered above, the errors introduced
by timing and phase offsets are equal to the difference in ZI+jZQ for the case of no errors given in Table VII and the case
with phase and time offset errors given in Table VIII.  These errors as a function of time tk are listed in Table IX.

Tc = Chip Interval
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Fig. 11. Simplified impulse response of the transmit filter.
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Using the listed values, the mean squared error is:

MSE � 1
8



8

k�1

�EQk � jEIk�
2

� 1
8



8

k�1

�E2
Qk � E2

Ik	

� 0.13876 .

(51)

To estimate timing and phase offset errors, the active code channels are determined by calculating ρi for every i and
identifying the channels for which the values of ρi are above a preset threshold. For example, if a threshold of 0.01
(corresponding to –20 dB) is used, every channel for which ρi > 0.01 will be declared an active channel.

In addition to determining the active code channels, it is necessary to determine the data sequence dih for each active
channel in which the subscript i denotes the ith code channel and the subscript h denotes the hth Walsh function interval in
the measurement interval. The data detector incorporated into the function used to calculate ρi is:

d
^

ih � sgn���

k

ZhkR*
ik�	 , (52)

where

sgn(u) �

� –1, u � 0

1, u � 0
(53)

and �{z} is the real part of z.  The index k varies over the chips in a Walsh function interval (k = 0 to 3 in our example).  From
the values tabulated in Table VIII, we can generate the detected data as shown in Table X.

Table IX
In-Phase (EI) and Quadrature (EQ) Components of Errors 

      in Example for Timing and Phase Offset Errors

Time t1 t2 t3 t4 t5 t6 t7 t8

EI –0.0629 0.0509 0.0569 0.0625 0.0509 –0.0745 –0.0569 0.0449

EQ 0.0569 0.0625 –0.0629 0.0509 0.0625 –0.1703 0.0629 –0.1823

Table X
Calculations for Data Detection in the Example

i,h ρi 

4

k�1

ZhkR*
0k d

^
ih

0,1     0.6723 (active)   6.6148   1

0,2 ”   6.1372   1

1,1     0.3259 (active)   4.5612   1

1,2 ” –4.2984+j0.4544 –1

2,1     0.0006 (inactive)

2,2 ”

3,1     0.0012 (inactive)

3,2 ”

After the active code channels and their data sequences are determined, an ideal signal of the form of equations 9 and 10
can be generated for each active code channel.  The in-phase and quadrature components of the ideal signals are:

Ii(t) � Ai(t)cos�i(t) (54)

and

Qi(t) � Ai(t)sin�i(t) (55)
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where Ai(t) and Φi(t) are the amplitude and phase of the ideal signal of the ith code channel passing through the points
(±1,±1) in the I-Q diagram as shown in Fig. 6. The reference signal is generated by superimposing the ideal signals given by
equations 54 and 55 for each active code channel.  The resulting in-phase and quadrature components of the ideal reference
signal are:

Iref(t) ��
i

�
^

iAi(t – �^i) cos���^ t ��i(t – �^i) � �
^

i� (56)

and

Qref(t) ��
i

�
^

iAi(t –�^i)sin���^ t ��i(t –�
^

i) � �
^

i� , (57)

where ��^   is frequency error,  �^ i is the relative amplitude ��^ i � �i

 	 , �^i  is the time delay, and �

^
i  is the phase of the ith code

channel.  The summations are over the set of active code channels.

The frequency error, time delays, and phases are determined by finding values of ��^ , �^ i, �
^

i , and �
^

i  for all values of i
corresponding to the active code channels to minimize the mean squared difference between the observable sequence Z(tk)
= ZI(tk) + jZQ(tk) and the reference R(tk) = Iref(tk) + jQref(tk), which is:

�
2 � 1

NM
�
NM

k�1

�Z�tk	 – R�tk	�
2
, (58)

where M and N are the same as in equation 32. �^0 and ��^  are used to update previous estimates of time delay and
frequency. Estimates of time and phase offsets obtained from �^i  and �

^
i  are:

��
^

i � �
^

i � �
^

0

��
^

i � �
^

i � �
^

0 .

(59)and

For the example above, values of ��^ , �^ i, �
^

i , and �
^

i  would be found to produce zero mean squared difference and error-free
estimates of these parameters.  In general, however, errors other than those introduced by timing and phase offsets would
be present, so that after the minimization of the mean squared difference, a nonzero residual between the reference and the
observable would exist and the parameters would be estimated with some error in the estimates.

Signal Flow Diagram
The signal flow diagram for the CDMA power, timing, and phase offset measurement algorithms is shown in Fig. 12. The
signal under test from the base station transmitter is down-converted to a 3.6864-MHz IF signal that is sampled at 4.9152
MSa/s.  The digitized IF signal is passed through a finite-impulse-response (FIR), linear-phase, digital IF filter centered at
1.2288 MHz.  This filter has a flat passband 1.4 MHz wide, which is considerably wider than the 1.23-MHz bandwidth of the
IF signal and provides blocking at dc and 359.2 kHz.  Indeed, the primary purpose of the IF filter is to block these signal
components.

Following the IF filter, the signal is down-converted to in-phase (I) and quadrature (Q) baseband signals.  In the
down-converter, the I and Q signals are filtered by flat, FIR, linear-phase, low-pass filters with passbands from 0 to 700 kHz
wide and stop bands from 1.16 to 2.0 MHz wide.  The full sample rate of 4.9152 MSa/s is retained at the output of the
down-converter to provide maximum accuracy at the correlator.

The next function after the down-converter is the correlator, which provides an estimate of the timing of the signal under
test. The inputs to the correlator are the baseband signal from the down-converter and an internally generated reference
signal.  This reference signal is the mathematically ideal signal that would be present at the output of the down-converter if
only the pilot signal were transmitted. The time origin of the reference signal corresponds to the first binary 1 following 15
binary 0s of the pseudonoise sequences ipn and qpn , as specified in the IS-95 standard.

The correlator performs the timing acquisition described earlier by finding the value of τR that maximizes the function given
by expression 25. Since this function is sensitive to frequency error, the correlator works reliably over a limited range of
frequency.  If T is the length of the record (in seconds) used in the correlator, then the maximum frequency error for which
the correlator will provide reliable acquisition is:

�fmax �
1

2T
. (60)

For example, if a 1.25-ms time record is used, then the maximum frequency error that will allow reliable acquisition in time
is ±∆fmax = ±400Hz.
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Fig. 12. Signal flow diagram for the HP 83203B CDMA power, timing, and phase offset measurement algorithms.

After the time delay τ0 is determined, the baseband signal is time-aligned with the reference signal.  This function is
performed in the synchronizer, which consists of a pair (for I and Q) of low-pass filters that resample the signals at a rate of
2.4576 MSa/s with a variable time delay to introduce the appropriate timing.

The synchronized baseband and reference signals are used in the frequency and phase preestimator to obtain initial
estimates of the carrier frequency and phase as given by equations 30 and 31.  These estimates are then used in the
frequency and phase compensator to largely remove ∆ω and θ0 from the baseband signals.

After obtaining a baseband signal that is compensated in frequency and phase, the next step is to remove the intersymbol
interference introduced by the transmit filter. This step is necessary to ensure the orthogonality of the code channels to
allow calculation of the code-domain power coefficients by the algorithm discussed earlier. Intersymbol interference is
removed by the complementary filter, which when cascaded with the transmit filter produces an overall filter response that
satisfies Nyquist’s criterion for zero intersymbol interference.

After the intersymbol interference is removed from the baseband signal by the complementary filter, refined estimates of
the carrier frequency and phase are obtained by minimizing the mean squared difference between the baseband signal and a
reference signal consisting of only the pilot. The procedure used here is similar to that used for estimating the frequency and
phase in conjunction with the time and phase offsets as described earlier.  After the intersymbol interference has been
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removed, it is unnecessary to include the effect of the transmit filters; this allows the pilot sequences to be used directly as
the reference signals.

After the refined estimates of carrier frequency and phase are obtained, the baseband signal is again passed through a
compensator and a complementary filter to improve the removal of frequency error, phase error, and intersymbol
interference from the baseband signal.

Following this second stage of compensation, the baseband signal is ready to be used for calculating ρi as described earlier.
This function is performed in the ρi calculator shown in the signal flow diagram.  Data bits are also detected in this function
that are needed to calculate the reference signal used for estimating time and phase offsets of code channels as described
earlier. This function could also be used to calculate the waveform quality factor ρ. However, this parameter is actually
calculated by another function developed for the HP 83203A using the procedure given in an earlier section.

The final steps in the signal flow diagram involve determining the time offsets and phase offsets of the active code channels
relative to the pilot channel. To estimate these offset parameters, it is necessary to generate an ideal reference signal
corresponding to the active code channels in which the amplitudes, phases, time delays, and frequencies of all of the code
channels in the reference signal can be controlled. The function that generates this ideal reference signal, referred to as the
reference signal synthesizer, is invoked by the parameter estimator, which uses a search procedure to minimize the mean
squared difference between the baseband test signal and the synthesized reference signal as described earlier.

Accuracy of the Measurement Equipment
Specifications for the HP 83203B (HP 8921A/600) are warranted performance. These specifications are derived from the
accuracy of the measurement algorithms, environmental considerations, measurement uncertainties, unit-to-unit variations,
and customer specification margins. Typical performance of the HP 83203B is significantly better than the published
specifications.

The minimum performance of a base station transmitter is specified in the IS-97 standard.  In section 11.1.3 of this standard,
Table 11.1.3.1, reproduced here as Table XI, specifies the frequency tolerance, time reference, pilot waveform quality, and
RF power output variation.

Table XI
Environmental Test Limits

(from Table 11.1.3-1 in IS-97 Standard)

Parameter Limit

Frequency
Tolerance

�0.05 ppm

Time Reference �10 µs

Pilot Waveform
Quality

ρ�0.912

RF Power Output
Variation

+2 dB, –4 dB

The carrier frequency of the RF signal to be tested is approximately 900 MHz, so the frequency tolerance given above
corresponds to an absolute frequency tolerance of ±45 Hz.  Since the HP 83203B can acquire a signal and accurately
estimate the frequency error when the frequency error is as large as ±400 Hz for a 1.25-ms measurement interval, frequency
errors within the above tolerance are easily accommodated.

The tolerance on pilot waveform quality significantly impacts the accuracy of the measurement algorithms.
Error-vector-magnitude-squared (evm2), which is defined as the ratio of the energy of the error to the energy of the
error-free transmit signal, can be shown to be approximately related to the waveform quality factor, ρ , as:

evm� 1 – 1� .ρ (61)

For the value of ρ  = 0.912 in Table XI,

evm� 1
0.912

– 1� � 0.31 , (62)

that is, the waveform quality specified in Table XI corresponds to a signal with an rms error of approximately 31%.

Other errors that impact the accuracy of the measurement equipment are time errors and phase differences between the
pilot channel and other code channels.  Tolerances on these errors are given in sections 10.3.1.2.3 and 10.3.1.3.3 of the IS-97
standard as less than ±50 ns for time errors and less than ±50 mrad for the phase differences.
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The accuracy of the waveform quality measurement equipment is specified in Table 12.4.2.1-1 of the IS-97 standard,
repeated here as Table XII.

Waveform quality is measured when only the pilot is transmitted.  We will discuss the accuracy in measuring each of the
parameters listed above and the measurement interval necessary to achieve the performance specified.

To measure code-domain power, test models for the base station are specified in Table 12.5.2-1 of the IS-97 standard,
reproduced here as Table XIII.

Table XII
Accuracy of Waveform Quality Measurement Equipment

(from Table 12.4.2.1-1 in the IS-97 Standard)

Parameter Symbol
Accuracy

Requirement

Waveform Quality ρ ±5�10–4 from
0.9 to 1.0

Frequency Error
(exclusive of test
equipment 
time-base errors)

∆f ±10 Hz

Pilot Time Alignment τ0 ±135 ns

Table XIII
Base Station Test Model, Nominal

(from Table 12.5.2-1 in the IS-97 Standard)

Type

Number
of

Channels

Fraction
of Power
(linear)

Fraction
of Power

(dB)
Comments

Pilot 1 0.2000 –7.0 Code channel 0

Sync 1 0.0471 –13.3 Code channel
32, always
1/8-rate

Paging 1 0.1882 –7.3 Code channel
1, full-rate only

Traffic 6 0.09412 –10 Variable code
channel
assignments;
full-rate only

The measurement algorithms have been tested and found to provide accurate results for signals with less than 10% of the
power in the pilot channel; however, in discussing the accuracy of the measurement algorithms in the next subsection, we
will only consider performance under the conditions prescribed by the nominal test model.

The accuracy required of the code-domain measurement equipment is given in Table 12.4.2.2-1 of the IS-97 standard using
the nominal test model given above.  This table is reproduced here as Table XIV.

We will discuss the accuracy of measuring each of the parameters given in Table XIV and give the minimum measurement
intervals and number of subestimates that must be averaged to achieve the accuracies specified.

Accuracy of the Measurement Algorithms
Dynamic Range. The flatness of the filters and the numerical accuracy of the computations used in all of the signal
processing algorithms for the HP 83203B are closely maintained to produce a computational error level of approximately
–55 dB. Since this error level is typically less than the level of the spurious signals and quantization noise introduced by the
analog down-conversion process and the analog-to-digital converter (ADC) used to digitize the IF signal under test, the
dynamic range of the HP 83203B is limited by the noise and spurious signal level at the output of the ADC.  The ADC uses
autoranging to maintain the signal level at the input of the quantizer at –1 dB to –10 dB from saturation. With the ADC
operating at –10 dB below saturation, the noise and

spurious signal level at the output of the ADC is approximately –45 dB relative to the digitized IF signal.   Therefore, the
analog and ADC hardware places a limit on the dynamic range of the code-domain power measurements of approximately
45 dB.
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Table XIV
Accuracy of Code-Domain Measurement Equipment

(from Table 12.4.2.2-1 in the IS-97 Standard)

Parameter Symbol
Accuracy

Requirement

Code-domain power coefficients ρi ±5�10–4f rom 5�10–4 to 1.0

Frequency Error (exclusive of test equipment
time-base errors)

∆f ±10 Hz

Code-domain time offset relative to  pilot ∆τi ±10 ns

Code-domain phase offset relative to pilot ∆θi ±0.01 radian

Accuracy in Measuring ρ and ρi. The accuracy in measuring waveform quality ρ and code-domain power ρi depends on the
accuracy of estimating time delay τ0 and frequency error ∆ω. The errors in the measurement of ρ produced by errors in
estimating τ0 and ∆ω are shown in Figs. 13a and 13b for measurement intervals of 1.04 ms and 2.08 ms. The error curves
correspond to transmitting an ideal pilot channel for which the true value of ρ is 1.0. Since the percentage error in the
measurement of ρ caused by frequency and timing errors is independent of the true value of ρ, the error curves presented
here apply to values of ρ from ρ = 1.0 to ρ<0.1. From Table XII, we see that the required measurement accuracy specified in
the IS-97 standard is ±5�10–4 for ρ = 0.9 to 1.0. This tolerance corresponds to a measurement error of –33 dB for ρ = 1.0,
which is shown in Figs. 13a and 13b.
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Fig. 13. Errors in the measurement of signal quality  produced by errors in estimating (a) t0 and (b) Dw for mea-

surement intervals of 1.04 ms and 2.08 ms. The error curves correspond to transmitting an ideal pilot channel for

which the true value of r is 1.0 and are valid for r = 0.1 to r = 1.0.

According to Table XII, frequency error must be measured to an accuracy of ±10 Hz and pilot time alignment must be
measured to an accuracy of ±135 ns. The uncertainty in the time reference of the ADC and errors of the time-delay estimator
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contribute to the measurement errors of pilot time delay.  In the HP 83203B, the ADC will contribute less than ±125 ns error
and the time-delay estimator will contribute less than ±10 ns error to the pilot time alignment measurement.  Therefore, for
purposes of determining the accuracies in measuring ρ and ρi, we can assume that limits on the errors of the measurements
of τ0 and ∆ω are:

–10 ns� �
^
0 – �0� 10 ns

–10 Hz� ��
^ – ��� 10 Hz.

and (63)

From the error curves in Fig. 13, we see that if the tolerances given by equation 63 are achieved, then for a measurement
interval of 1.04 ms, the accuracy requirement for measuring ρ is achieved. If a measurement interval of 2.08 ms is used, then
a timing error of �10 ns is satisfactory. However, for the longer measurement interval it is necessary to reduce the
tolerance of the frequency error to �6 Hz. We can effectively get a longer measurement interval and avoid the tighter
tolerance on frequency error by averaging several measurements, as considered later.

The errors caused in the measurement of ρ0 by errors in estimating τ0 and ∆ω are presented in Figs. 14a and 14b. The error
curves correspond to transmitting an ideal pilot in which the true value of ρ0 is 1.0.  This is the same as the signal model
used for the curves in Fig. 13. We see that the errors caused by timing and frequency errors are relatively insensitive to the
measurement interval when measuring code-domain power.  The reason for this is the difference in the lengths of the
correlators used for the code-domain power and waveform quality calculations. For code-domain power, correlated
energies are computed over subintervals one Walsh function interval in length and then 20 of these energy computations are
averaged in the case of the 1.04-ms measurement interval, or 40 are averaged in the case of the 2.08-ms measurement
interval. For the waveform quality calculation, the correlated energy over the entire measurement interval is computed.
Because the length of the correlator used for ρ is a factor of 20 or 40 greater than the length used for ρi, the measurement of
ρ is much more sensitive to uncompensated frequency errors than the measurement of ρi.
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Fig. 14. Errors caused in the measurement of ρ0 by errors in estimating (a) τ0 and (b) ∆ω. The error curves corre-

spond to transmitting an ideal pilot in which the true value of ρ0 is 1.0 (same signal model as for Fig. 13). The results

for ρi for i � 0 are essentially the same.
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From the error curves in Fig. 14, we see that if the tolerances given by equation 63 are achieved, then the accuracy
requirement for ρ0 given in Table XIV is achieved. Again, as with ρ, the percentage error in measuring ρ0 is independent of
the true value of ρ0.

The curves in Fig. 14 were obtained for ρ0. However, since all code channel measurements experience essentially the same
sensitivities to timing and frequency errors, these curves apply to any ρi, i = 0, 1, ..., 63 within the dynamic range of the
equipment.

Since the dynamic range of the code-domain power measurement equipment is approximately 45 dB, precise values of
code-domain power, well within the tolerances specified by the IS-97 standard, can be obtained for ρi = 1.0 to ρi �
3.2�10–5 if the tolerances on the estimates of timing and frequency errors are satisfied.  To observe code-domain power to a
level of –45 dB, it would be necessary to use a test signal with a waveform quality factor of ρ� 0.99997, where the errors
are uniformly distributed in power over the 64 code channels.

The measurements of ρ and ρi may have error components that are random.  Moreover, if a sequence of measurements is
made from independent data records, then the random errors for the independent records are uncorrelated. To reduce the
random error components added to the measurements of ρ and ρi, averaging of a set of measurements obtained from the
independent records can be performed. To perform this averaging, it is not appropriate to average the values obtained for ρ
and ρi directly, since this would introduce a bias to the final result. Rather, the energy terms contained in the numerator and
denominator of equation 40 for ρ and equation 32 for ρi are averaged separately, and then the final values are obtained as the
ratios of these averages.  This mode is referred to in the HP 83203B as “Fast Code-Domain Power with Averaging.”

Accuracy in Measuring ∆τi and ∆θi. The performance of the algorithms for the code-domain parameter estimator was tested
by performing simulations in which Gaussian random errors were added to the simulated transmitting signals. A theoretical
expression was derived for the standard deviation of the estimates of phase offsets, ∆θi, based on the same mathematical
model used for the simulations. It was found that the results obtained from the simulations agreed very well with the results
obtained from the theoretically derived equation, with differences of less than 10 percent. Moreover, it was found that the
error in estimating time offsets, ∆τi, when measured in nanoseconds, was approximately one-half the error in measuring
phase offsets measured in milliradians.  Since the tolerances on measurement accuracy given in Table XIV are ±10
nanoseconds for time offsets and ±10 milliradians for phase offsets, the measurement interval is governed by the accuracy
requirement for phase offsets. To measure time offsets and phase offsets to the accuracy  specified in the standard, it was
found  necessary to average subestimates of these parameters. A noteworthy outcome of the performance analysis
discussed herein is that the algorithms designed for the code-domain parameter estimator indeed minimize the sum-square
difference between the actual transmit signal and the estimated ideal transmit signal, as specified in the IS-97 standard.

The expression derived for the rms error of the estimate of the phase of a code channel is:

�
�
^ � 1

2
evm
BNT� , (64)

where evm is the effective error-vector magnitude, which is equal to the ratio of the total energy of the error divided by the
energy of the code channel signal in question, B = 615 kHz is the bandwidth of the baseband transmit signal, T is the
measurement interval for one subestimate of the phase, and N is the number of subestimates averaged to obtain the
estimate of phase.

The worst case occurs for the sync channel, which for the nominal test model given in Table XIII has 4.71% of the total
transmit energy. If the waveform quality factor for each active code channel is ρ = 0.912, then the effective evm2 for the sync
channel is given approximately as:

evm2 �
1� –1
0.0471

� 2.049 .
ρ

(65)

If the measurement interval is T = 2.0 ms (2.2 ms was used in the simulations) and the number of subestimates averaged is
34, then the resulting rms error of the estimate of the phase of the sync channel is:

�
�
^
sync

� 1
2

2.049
(615)(34)(2.0)
� � 3.50 mrad. (66)

The effective evm2 for the pilot channel is:

evm2 �
1� –1

0.2
� 0.4825 ,

ρ
(67)

from which, for the same conditions as for the sync channel,  we obtain the rms error of the estimate of the phase of the
pilot channel as:

�
�
^
pilot

� 1
2

0.4825
(615)(34)(2.0)
� � 1.70 mrad. (68)

Since the phase offset of the sync channel is:
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��
^

sync � �
^

sync – �
^

pilot , (69)

and �
^

sync and �
^

pilot are uncorrelated,

�
��

^
sync

� �
2
�
^
sync
� �

2
�
^
pilot

� � 3.52� 1.72�

� 3.89 mrad.

(70)

The estimates of phase are obtained from the sum of 25 subestimates in which the errors in the subestimates are essentially
independent. Therefore, the estimate of phase offset is well-approximated as a Gaussian random variable. Using the
Gaussian approximation, the 99% confidence interval for the estimate of the phase offset of the sync channel for the
nominal test model is:

99% confidence interval� 2.57�
��

^
sync

� 10 mrad.
(71)

�

�

The measurement accuracy requirement for ∆θi given in Table XIV is an absolute ±10 milliradians. If we interpret this as the
99% confidence interval, then the accuracy requirement can be achieved by averaging 34 estimates obtained using a 2.0-ms
measurement interval as demonstrated by the above example. Other combinations of N and T can be used to achieve the
required accuracy, provided that the value of T is not too small to allow acquisition of frequency and timing. It is
recommended that a measurement interval of T�1.0 ms be used to obtain reliable performance. Other combinations of N
and T that will allow measurement errors for ∆θi of less than ±10 mrad are presented in Fig. 15. As pointed out above, if ∆θi
is measured to the accuracy required, then the accuracy requirement for ∆τi will also be achieved. We wish to emphasize
that the accuracy of the measurements of ∆τi and ∆θi depends on the waveform quality and the percentage of power in the
code channel being measured.  The curves in Fig. 15 represent a worst-case situation in which the waveform quality is ρ =
0.912 for all code channels and only 4.71% of the transmitter power is contained in the code channel being measured. For
other test models, the lower bounds on NT can be obtained following the example given above and, for larger values of ρ,
would be significantly lower than those given in Fig. 15.
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Accuracy in Measuring τ0 and ∆ω. The accuracy in measuring ρ and ρi is primarily dependent on the accuracy of the
estimates of τ0 and ∆ω as shown in Figs. 13 and 14. If τ0 and ∆ω were obtained precisely, then the magnitude of the errors in
the values obtained for ρ and ρi would be less than 10–4, which is well within the accuracy specified for the HP 83203B.

The best accuracy for the estimates of τ0 and ∆ω is obtained when the full parameter estimator is employed to estimate the
time and phase offsets of code channels. In this case, τi and θi are determined for all active code channels and the estimate
of ∆ω is obtained jointly with the estimates of τi and θi.

The next best accuracy for the estimates of τ0 and ∆ω is obtained by using a reference signal synthesized as the sum of the
reference signals for all active code channels, as is done for the full parameter estimator, but with the time and phase offsets
set equal to zero in the parameter estimator. This procedure reduces the search for phase and timing from a 2K-dimensional
problem, where K is the number of active code channels, to a 2-dimensional problem.

The accuracy of the estimates of τ0 and ∆ω was determined through simulations in which the nominal signal model was
used with random time and phase offsets introduced to the code channels and a measurement interval of 1.09 ms. Timing
and phase offsets that were uniformly distributed over a range of ±50 ns for time offsets and ±50 mrad for phase offsets
were introduced. The results of these simulations are presented in Figs. 16 and 17, which show the rms errors of the
estimates of τ0 and ∆ω, respectively, as functions of ρ.  
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Fig. 16. Rms error of the estimate of τ0 as a function of signal quality ρ, determined through simulations in which the

nominal signal model was used with random time offsets of 0 to ±50 ns and phase offsets of 0 to ±50 mrad introduced

to the code channels and a measurement interval of 1.09 ms.
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From Fig. 16, we see that the estimates of τ0 obtained from the 2-dimensional parameter estimator are nearly as accurate as
those obtained from the full 2K-dimensional parameter estimator.  On the other hand, we see from Fig. 17 that the full
parameter estimator provides roughly a factor of two less error in estimating frequency compared to the 2-dimensional
parameter estimator.  These curves show that there is little advantage in using the full parameter estimator unless time and
phase offsets are outputs of the measurement. Therefore,  the second method of obtaining estimates of τ0 and ∆ω is
recommended when measuring code-domain power without measuring  time and phase offsets.  A mode in the HP 83203B
referred to as “Accurate Code-Domain Power” employs this second method of obtaining estimates of τ0 and ∆ω.

The third method for obtaining estimates of τ0 and ∆ω uses a reference signal consisting of only the pilot signal.  This mode
is referred to as “Fast Code-Domain Power” in the HP 83203B.  If only the pilot channel is transmitted, then this mode is as
accurate as the other two and is appropriate for measuring code-domain power.  Moreover, if τ0 and ∆ω are known a priori,
then the “Fast Code-Domain Power” mode should be used.

Presented in Fig. 18 are curves obtained from simulations showing the rms error in estimating τ0 and ∆ω for the case in
which only the pilot channel is transmitted and a measurement interval of 1.09 ms is used. Curiously, these curves show that
the timing errors in ns and the frequency errors in Hz are nearly identical. If we assume that the measurement errors are
Gaussian, then we can obtain the 99% confidence limits for the measurement of τ0 and ∆ω by multiplying the rms values
given in Fig. 18 by a factor of 2.57. To obtain the measurement error of less than ±10 ns for τ0 and less than ±10 Hz for ∆ω as
specified in Table XIV with a confidence of 99%, the rms errors in measuring τ0 and ∆ω must be less than 3.9 ns for τ0 and
less than 3.9 Hz for ∆ω.  From Fig. 18, we see that τ0 and ∆ω can be estimated to sufficient accuracy for 0.85<ρ<1.0 using a
measurement interval of 1.09 ms. This exceeds the range of 0.9<ρ<1.0 specified in Table XII.

Referring to the performance curves in Figs. 16 and 17, we see that if ρ is less than approximately 0.97, then the
performance given by these curves may not be adequate. If it is necessary to obtain better estimates of τ0 and ∆ω than those
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given in Figs. 16, 17, and 18, then it will be necessary to use a longer measurement interval than the 1.09 ms considered here,
or to average estimates obtained from independent time records, as is done for the time and phase offset measurements. As
for the time and phase offset estimates, the rms errors of the estimates of τ0 and ∆ω are proportional to 1� NT� .
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Fig. 18. Curves obtained from simulations showing the rms error in estimating τ0 and ∆ω for the case in which only

the pilot channel is transmitted and a measurement interval of 1.09 ms is used.
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Measurement Examples
Typical results obtained with the HP 8921A cell site test set using the HP 83203B measurement algorithms are presented in
Figs. 19 and 20. These results are not intended to validate any particular base station, but are presented only to illustrate
actual measurements obtained using the algorithms discussed in this paper. The results presented in Fig. 19 were obtained
from a base station transmitter in which the pilot, paging channel 1, sync channel 32, and one full-rate traffic channel 11
were active. From Fig. 19a, we see that the floor of the code-domain power is at approximately –38 dB relative to the total
transmitter power which corresponds to a relative error energy level of –38 dB + 18 dB = –20 dB. The factor of 18 dB
corresponds to the distribution of energy to 64 code channels. The floor level of –38 dB corresponds to a value of ρ
approximately equal to:

� 1
1� 10–2.0

� 0.9901 .ρ (72)

The value of ρ measured was 0.9882. From the measured value of  ρ we can calculate the approximate value of the floor
level of the code-domain spectrum as:

Floor Level � 10log10(1� – 1) – 18

� –37.23 dB,

ρ
(73)

which agrees closely with the floor level we see in Fig. 19a.

From the plot of code-domain power in Fig. 19a, we see that code channel 33 is significantly above the floor, even though
code channel 33 was not active. This is an indication that the active code channels were leaking energy into code channel
33. It should be pointed out that the base station was overdriven during this measurement, which could be seen from a
measurement of the spectrum of the transmitted signal. The plot of the measured spectrum is not included in this paper.

Measurements of time offsets and phase offsets obtained for a measurement interval of 1.25 ms are presented in Figs. 19b
and 19c. For these measurements no averaging was used; therefore, the value of NT to use in equation 64 to determine the
accuracy of the measurement is NT = 1.25 ms. The channel with the smallest energy level was the sync channel 32 for which
the relative measured energy level was –12.8 dB. This corresponds to 5.25% of the energy in the sync channel. By using
equation 65 with ρ = 0.9882, we obtain an effective evm2 for the sync channel of:

evm2 �
1� – 1
0.0525

� 0.227 .
ρ

(74)

Using this value in equation 64, we obtain for the rms error of the estimate of the phase of the sync channel:

�
�
^
sync

� 1
2

0.227
(615)(1.25)
� � 8.6 mrad. (75)

The relative power in the pilot channel was –1.41 dB which corresponds to 7.73% of the total energy in the pilot. By
following the above procedure for the pilot channel, we obtain the rms error for the estimate of the phase of the pilot
channel:
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(b)

(a)

(c)

Fig. 19. Results of code-domain measurements of a base station transmitter with the pilot (0), paging channel (1),

sync channel (32), and one full-rate traffic channel (11) active. (a) Code-domain power measurements. (b) Time offset

measurements. (c) Phase offset measurements.

�
�
^
pilot

� 7.3 mrad. (76)

Using the rms errors obtained above in equation 70, we obtain the rms error in the measurement of the phase offset of the
sync channel:

�
�
^
sync

� 8.62� 7.32� � 11.3 mrad. (77)

and by using the Gaussian assumption used for equation 71 we obtain:
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(b)

(c)

(a)

Fig. 20. Results of code-domain measurements of a base station transmitter with the pilot (channel 0), paging

channel (1), sync channel (32), and four full-rate traffic channels (5, 6, 7, 8) active. (a) Code-domain power

measurements. (b) Time offset measurements. (c) Phase offset measurements.

99% confidence interval� 2.57�
��

^
sync

� 29 mrad.
(78)

�

�

Thus, from the results of the simulations discussed previously, we can expect a 99% confidence interval for the
measurement of time offset of approximately ±14.5 ns.

From Fig. 19b, we see that the measured time offsets are within the ±50-ns tolerance given in the IS-97 standards, with the
worst-case 17-ns time offset occurring for the paging channel.  The time offset specification is satisfied even if we include
the ±14.5-ns confidence interval. From Fig. 19c, we see that the phase offsets for the sync channel and the traffic channel
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are well within the ±50-mrad tolerance given by the standard. However, the measured phase offset for the traffic channel
was 91.8 mrad, which is outside the tolerance specified by the standard.

For the time and phase offset measurements presented here, the confidence intervals for the measurements were larger
than could be used for valid tests. As discussed in the section on accuracy above, to obtain acceptable measurement
accuracy it is necessary to average estimates of time and phase offsets. For the measurement situation of Fig. 19, acceptable
measurement accuracy would have been achieved by averaging nine estimates to reduce the measurement confidence
intervals by a factor of 3.

The results of the code-domain measurements of a base station transmitter in which four full-rate code channels 5, 6, 7, and
8 are active are presented in Fig. 20. In this case, we see that a significant amount of energy is leaked to inactive code
channels.  From Figs. 20b and 20c, we see that the largest time offset and phase offset are –15.6 ns and 69 mrad,
respectively, for the sync channel.  For these results, a single measurement interval of 1.25 ms was used, which results in
large measurement confidence intervals.
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