
February 1996 Hewlett-Packard Journal 1

Applying the Code Inspection Process to

Hardware Descriptions

The code inspection process from the software world has been
applied to Verilog HDL (hardware description language) code. This
paper explains the code inspection process and the roles and
responsibilities of the participants. It explores the special
challenges of inspecting HDL, the types of findings made, and the
lessons learned from using the process for a year.

by Joseph J. Gilray

The primary goal of the code inspection process is to maximize the quality of the code produced by an organization. A
secondary benefit of the process is that it allows members of the development teams to share best practices. The code
inspection process revolves around a formal inspection meeting. The process calls for the development of operational
definitions, planning, a technical overview, preparation for the meeting, rework after the meeting, and follow-up. Fig. 1
illustrates the relationships between the steps. The steps themselves are described in the sections that follow. As shown in
Fig. 1, the operational definitions affect all stages in the inspection process. Between some of the stages in the inspection
process decisions whether or not to continue need to be made. These decisions are indicated on the figure by “Proceed?”.

Planning

Technical
Overview

Preparation

Inspection
Meeting

Rework

Follow Up

Operational
Definitions

Proceed?

Proceed?

Proceed?

Fig. 1. the code inspection process.

The code inspection process as implemented at the HP Integrated Circuits Business Division in Corvallis, Oregon (ICBD
Corvallis) contains several roles: process manager, moderator, author, paraphraser (reader), scribe, and inspector. There is
only one permanent role, that of inspection process manager. The remaining roles are filled for each inspection. The
subsections below call out the general responsibilities and duties of each role. Specific tasks are called out in the
description of each process stage later in the paper. HP’s software quality engineering department has published checklists
for each role that can be very useful when getting started with the process.

2 February 1996 Hewlett-Packard Journal

Process Manager. Ensures that best practices are spread among the designers of the organization or project. Tasks include
developing and publishing operational definitions (described in the next section), disseminating best practices and common
defects, and acting as an advocate for the HDL code inspection process. This last item cannot be overemphasized. The
process manager must ensure that priority is given to inspections even in the face of mounting schedule pressure on the
design team. It is also important that the process manager make clear that the specific results (defects found) of the
inspections will not be made available to management or any other party. The inspection process can only succeed in an
environment where the members of the design team feel secure in opening their code to review. So that management sees
the value of the process, the process manager should keep general results of the overall inspection process such as the
number and type of defects found, the time spent, lines of code inspected, and most important, best practices shared. These
process statistics are very useful, but the grass roots support that develops for the inspection process will be the real
indicator of its value.

Moderator. Manages each step of the process for a given inspection. Ensures that participants are prepared and that
requirements are met.

Author. Prepares the HDL for inspection. Creates supplementary documentation (such as block diagrams) as necessary to
explain the purpose of the code. Open to suggestions and defects. Reworks the HDL as necessary.

Paraphraser. Familiar with guidelines and best practices. Able to explain the HDL code during the inspection meeting.

Scribe. Logs defects and enhancements found during the meeting.

Inspector. Reads and understands the HDL. Notes any defects, comments, or enhancements before the meeting. Every
person involved in the meeting participates as an inspector.

Development of Operational Definitions
An operational definition is simply a standard. Before an inspection takes place a core set of operational definitions should
be in place and recognized by the design team. They are developed from conventions, guidelines, industry standards, and
recognized best practices. For HDL code inspections at ICBD Corvallis, we adopted the simplest set of operational
definitions that we felt were adequate to guide the process:
� Coding style standards. Although no explicit HDL coding standard was selected, we developed a standard HDL

module header (Fig. 2).

/ / File name
/ / Module name(s)
/ / Author name(s)
/ / Revision log
/ / File description (why are these modules grouped together)
/ / . . .
/ / Module name (for each module)
/ / Module description
/ / Signal descriptions (these include all HDL signals, including wires)
/ / For each signal specify:
/ / – type
/ / – purpose
/ / – values/states description
/ / – invariants (such as tristate nodes that are always driven)
/ / – special loading conditions
/ / – value at reset
/ / – overflow/wraparound conditions (e.g. for counters)

Fig. 2. Standard Verilog HDL module header adopted for code inspections.

� Definition of a defect. We defined a defect as any deviation from the module specification as presented in the tech-
nical overview meeting (see below) and the HDL module header.

� Defect severity codes. We applied a simple defect severity scale based on HP’s internal Defect Tracking System
(DTS), as shown in Table I.

February 1996 Hewlett-Packard Journal 3

Table I
Defect Severities

Name ID Description

Critical 9 Defect will lead to unworkable or grossly inefficient design.

Serious 7 Defect will lead to a large deviation from the specification or to a design that is unreli-
able or very inefficient.

Major 5 Defect will lead to a deviation from
the specification or to a design that is inefficient.

Minor 3 Defect will lead to a minor deviation from the specification or to a design that is
slightly inefficient. Also used when code is in serious need of comments to be main-
tainable.

Wibni 1 “Wouldn’t it be nice if...?” This ID is used for enhancement requests, which are typi-
cally changes in coding style or requests for clarifying comments in the code.

� Defect logging standards. We started out using inspection data summary sheets provided by HP’s software quality
engineering department, but after a few inspections we found that an open-format inspection process and defect
logs worked better.

� Target-based best practices. ICBD Corvallis developed a set of Verilog HDL coding guidelines to ensure reliable,
high-quality synthesis results. These guidelines include sections on clocking strategies, block structure, latches and
registers, state machines, design for test, ensuring consistent behavioral and structural simulation results, and is-
sues specific to Synopsys synthesis tools, which are used extensively by HP. This document provided valuable input
to the HDL code inspection process and itself benefitted from the practices shared during the inspections.

� Inspection entry criteria. The inspection entry criteria were that the HDL had to be functionally correct in behav-
ioral simulation and had to be of small-to-moderate size (100 to 700 noncomment Verilog HDL source statements).

� Inspection exit criterion. We did not develop a formal inspection exit criterion. Instead, the moderator was given
the responsibility of ensuring that rework was satisfactorily completed for each piece of HDL inspected.

Planning
When a designer feels that a piece of HDL code is a good candidate for inspection, the designer asks another designer to act
as moderator. Together they review the HDL to be inspected to ensure that it meets the entry criteria, especially that the
amount of HDL to be inspected is appropriate. In addition, they review any supplementary documentation such as module
specifications or block diagrams and discuss what will need to be presented at the technical overview meeting. The
moderator, with help from the author, assembles the rest of the inspection team: a paraphraser (reader), a scribe, and up to
three additional inspectors. It is the moderator’s responsibility to schedule the technical overview meeting and to ensure
that the inspection team members are prepared to meet their responsibilities. The moderator should treat the meetings and
preparation as a very important requirement for each participant. Every person involved must be prepared—at a code
inspection, no one is just an observer.

Technical Overview
The technical overview meeting should last no more than 90 minutes. Its primary purpose is to allow the author to outline
the module(s) to be inspected and to answer questions. The roles are formally assigned during this meeting and the
moderator should ensure that all participants understand the roles assigned to them. If there are inexperienced inspection
team members, the moderator should take time to explain the operational definitions and to pass out responsibility
checklists for each role. Finally, any supplementary documentation and the HDL code itself are distributed to the team. The
code should be printed with line numbers so that during the inspection meeting all team members can more easily follow
the discussion.

Preparation
Each member of the inspection team should spend from two to four hours reading over the HDL. Team members should
mark possible defects on their copies of the code. Team members should freely discuss the code among themselves but not
in a wider context, to protect the privacy of the author. The team should be given at least a week to look over the HDL.
During this time the moderator should schedule the inspection meeting. Before the meeting the moderator should ensure
that all team members are prepared and can participate in the meeting before allowing the inspection to proceed.

Inspection Meeting
The inspection meeting is the heart of the process. The moderator must reserve a quiet room for a sufficient amount of time.
Typically inspection meetings take from two to three hours. The moderator is also responsible for keeping the meeting on

4 February 1996 Hewlett-Packard Journal

track so the code can be completely inspected in the time allowed. To start the meeting the scribe should record the amount
of preparation time required of each participant. The paraphraser should announce the order in which the code will be
inspected. Typically this is top-down or bottom-up. The paraphraser explains each block of code and allows time for each
inspector to discuss possible defects or enhancements to that code.

The goals of the meeting may vary somewhat from organization to organization, but typically the major goals are to find
defects in the code under inspection and to share best practices among the members of the design or coding team. In our
process, we encouraged discussion of any defect or enhancement. Although this does not strictly adhere to the traditional
software inspection process, we felt the benefits (improved coding, simulation, and synthesis practices) justified the time
spent.1

The moderator must ensure that any defect or enhancement is recorded by the scribe and that the inspection team agrees to
the severity assigned to each item. To keep the group on track, the moderator should not allow long discussions of the
severity of any defect. Where no agreement can be reached, the moderator should assign a severity. If the assignment of a
severity code becomes a stumbling block to progress in several meetings, a simpler major/minor severity classification can
be adopted as an operational definition.2 The moderator should keep track of any best practices that come up during the
meeting that are not already part of the operational definitions and note any questions raised about related design processes
and tools.

Rework
After the meeting the scribe gives the defect log to the author (and only to the author). It is the author’s responsibility to
modify the HDL code as appropriate. If the author or the moderator feels that the HDL should be reinspected, another
meeting can be scheduled (this should be very rare, and should proceed with a different set of participants in all roles other
than the author).

Follow-up
After each inspection the moderator should investigate any questions that were brought up about design processes and
tools, such as simulation and synthesis. The results of the investigation along with any new best practices should be
published for the design teams. The moderator and process manager should also review the operational definitions and
update them. Finally, the process manager should update the overall inspection process statistics.

HDL Issues
When inspecting code written in a high-level software language, normally there is a single target compiler and platform. We
found that a major difficulty with inspecting code written in a hardware description language was deciding on a target on
which to focus. HDL is traditionally targeted to both simulation and synthesis (among a growing list of HDL source-level
tools). We started by trying to inspect HDL without thinking in terms of a specific target. In theory, it might be possible to
inspect HDL code as an abstract description. In practice, it was nearly impossible. Both the expected simulation results and
the actual implementation created by the synthesis process were always on the minds of the inspectors (see Fig. 3).
Furthermore, operational definitions such as defect severity are invariably developed and interpreted with reference to a
target.

Register Transfer Language
Hardware Description Language

Results and
Structural

Representation
Results

Differences

Synthesis

• Options
• Configuration
• Constraints

Simulation

• Options

Fig. 3. HDL is targeted to both simulation and synthesis.

February 1996 Hewlett-Packard Journal 5

By the time we had done several inspections it was evident that the most common practices being shared in the meetings
were related to register transfer language (RTL) coding for synthesis. Since the synthesis tools are not as mature as either
compilers for high-level languages in the software domain or simulators in the hardware domain, we spent a good deal of
time discussing what structural elements the synthesis tools would create from the RTL-level HDL code given a set of
constraints and synthesis options. This seemed natural given the complexity of the synthesis tools. At times the inspection
meetings focused more on the synthesis tools than on the HDL. When writing HDL for synthesis the types of complexities
involved are more akin to porting a complex piece of software between frameworks than between compilers. Therefore, it
is inevitable that the inspection meetings devote a good deal of time to synthesis. As use of very complex source-level tools
such as behavioral synthesis tools becomes widespread this effect will become more pronounced. In fact, one benefit of the
HDL inspection process is to share information about the tools used during design creation. This happens less frequently in
a traditional software inspection where the compiler is less configurable and better understood. But where the software is
targeted at many platforms, this type of discussion occurs in the software domain as well.

Another difference we found between HDL code inspections and software inspections was that often there were questions
that couldn’t be satisfactorily answered during the inspection, such as “What will the synthesizer produce from the following
code (e.g., mixed addition and subtraction of registers with differing widths)?” It was up to the moderator to follow up with
the author (or another inspector) on questions that couldn’t be answered in the meeting and to write up a response for the
design team and for possible inclusion in the best practices guidelines.

Table II indicates the kinds of topics that came up during the inspections and their approximate frequency.

Table II
HDL Inspection Topics

Frequency Topic

35% HDL coding style, standards, and guidelines (e.g., when to use blocking and nonblocking as-
signments, etc.)

30% Structures produced by synthesis tools (HDL compiler, design compiler, finite state machine
compiler)

10% Differences between simulation results and synthesis results

10% HDL efficiency considerations (e.g., inference of unnecessary latches, use of extra clock
cycles)

10% HDL documentation

5% HDL block structure

As more HDL inspections were performed, the number of experienced inspectors grew and the guidelines for creation of
HDL for synthesis, which had been created by synthesis users in the lab, became widely disseminated and discussed. Again,
one of the primary benefits of the HDL code inspection process is the spread of best practices among the larger group of
designers.

Lessons
As the use of HDL increased in our lab, we noted a need for tools to improve the quality of the HDL produced by the design
teams. The lack of HDL source-level tools such as code complexity analyzers, lint (a syntax checker), and others led us to
choose a less automated approach. Our first effort at improving the quality of HDL was to develop an HDL code inspection
process based on the inspections done for software written in high-level languages.

The process that evolved for inspecting HDL in our lab incorporates elements of both a formal code inspection process and
a structured walkthrough process. Although we gave importance to the technical overview meeting, it wasn’t always held,
especially if inspection team members were offsite. Furthermore, both the rework and the follow-up steps were left to the
moderator and author and checked only informally by the process manager.

Early in the adoption of the process we used a set of responsibility checklists for each role. As time went on we found that
these were not strictly necessary but did engender a feeling of formality. It is important that the participants take the
process seriously to ensure that the time spent on it is not wasted.

Over time we came to realize the importance of the technical overview meeting. If it is impossible for the author to attend the
meeting (we ran into several cases where the author was from another site and unable to attend a technical overview) then
someone else on the inspection team should take the author’s place for the meeting. In cases where we skipped the meeting,
the preparation time for each participant increased dramatically. In one case the inspection required 6 to 10 hours of

6 February 1996 Hewlett-Packard Journal

preparation time. Though the code was fairly long at 900 lines of HDL, this was an unreasonable amount of time to expect
from each reviewer and could have been reduced by half had there been a one-hour technical overview held.

In our experience, the most significant benefit of the HDL inspection process was to spread HDL, simulation, and synthesis
best practices among the design teams. Not only did the process encourage interaction between various teams within ICBD,
but several design teams in HP entities outside of ICBD brought code to us for inspection. To ensure that this benefit is
realized it is very important that the process manager and the moderators take the time to publish the guidelines that are
developed during each inspection. As designers become proficient at creating HDL and knowledgeable of synthesis and
simulation best practices, and as HDL coding guidelines become well-established in an organization, the need to do
inspections to spread best practices decreases.

We found relatively few major defects in the HDL code that was inspected, probably because the code was all at the RTL
level and simulated and synthesized before inspection. Studies have indicated that the inspection process gives the best
results when applied at a high level of abstraction. I contend that we will find more defects if we apply the process to
module specifications or to behavioral HDL. If the target chosen is complex (as behavioral synthesis tools currently are) the
tendency for the process to focus on the tool instead of the code will also be more pronounced. Even so, applying the
inspection process to higher-level abstractions may be a logical next step. Doolan wrote, “As people become aware of the
tremendous benefits of the inspection process, there is an increasing desire to apply it to other software items, such as user
documentation ... inspection breeds inspection.”2

Summary
Reference 3 describes one ICBD Corvallis project that used the HDL inspection process (however, inspections are not
discussed in reference 3).

The code inspection process can be applied successfully to hardware descriptions if the following conditions are met:
� A simple set of operational definitions is developed for the process.

� Engineers are willing to open their code to inspection and the process is viewed by the design community as bene-
ficial and important.

� Management gives project teams adequate time to perform inspections.

� Best practices and guidelines are recorded and updated.

For project teams just starting to use hardware description languages in the design process, code inspections can play a
vital role in ensuring high-quality HDL. At ICBD Corvallis, we found that the inspection process works extremely efficiently
in spreading best practices for HDL coding, simulation, and synthesis.

References
1. T. DeMarco, Controlling Software Projects, 1982, pp. 220-232.
2. E.P. Doolan, “Experience with Fagan’s Inspection Method,” Software—Practice and Experience, February 1992, pp. 173-182.
3. J.D. McDougal and W.E. Young, “Shortening the Time to Volume Production for High-Performance Standard Cell ASICs,”

Hewlett-Packard Journal, Vol. 46, no. 1, February 1995, pp. 91-96.

� Go to Article 9
� Go to Table of Contents
� Go to HP Journal Home Page

http://www.hp.com/hpj/feb96/fb96a9.html
http://www.hp.com/hpj/feb96/toc-02-96.html
http://www.hp.com/hpj/journal.html

