
February 1996 Hewlett-Packard Journal 1

Design of the HP PA 7200 CPU

The PA 7200 processor chip is specifically designed to give
enhanced performance in a four-way multiprocessor system
without additional interface circuits. It has a new data cache
organization, a prefetching mechanism, and two integer ALUs for
general integer superscalar execution.

by Kenneth K. Chan, Cyrus C. Hay, John R. Keller, Gordon P. Kurpanek, Francis X. Schumacher, and

Jason Zheng

Since 1986, Hewlett-Packard has designed PA-RISC1,2 processors for its technical workstations and servers, commercial
servers, and large multiprocessor transaction processing machines.3-9 The PA 7200 processor chip is an evolution of the
high-performance single-chip superscalar PA 7100 design.

The PA 7200 incorporates a number of enhancements specifically designed for a glueless four-way multiprocessor system
with increased performance on both technical and commercial applications.10-11 On the chip is a multiprocessor system bus
interface which connects directly to the Runway bus described in Article 2. The PA 7200 also has a new data cache
organization, a prefetching mechanism, and two integer ALUs for general integer superscalar execution. The PA 7200
artwork was scaled down from the PA 7100’s 0.8-micrometer HP CMOS26B process for fabrication in a 0.55-micrometer HP
CMOS14A process.

Fig. 1 shows the PA 7200 in a typical symmetric multiprocessor system configuration and Fig. 2 is a block diagram of the PA
7200.

Instruction
Cache
SRAMs

PA 7200
CPU

Data
Cache
SRAMs

Processor Module

Instruction
Cache
SRAMs

PA 7200
CPU

Data
Cache
SRAMs

Processor Module

Bus
Converter

Memory
Controller

Runway Bus

Fig. 1. The PA 7200 processor in a typical symmetric multiprocessor system configuration.

Processor Overview
The PA 7200 VLSI chip contains all of the circuits for one processor in a multiprocessor system except for external cache
arrays. This includes integer and floating-point execution units, a 120-entry fully associative translation lookaside buffer
(TLB) with 16-block translation entries and hardware TLB miss support, off-chip instruction and data cache interfaces for
up to 2M bytes of off-chip cache, an assist cache, and a system bus interface. The floating-point unit in the PA 7200 is the
same as that in the PA 7100 and retains the PA 7100’s 2-cycle latency and fully pipelined execution of single and
double-precision add, subtract, multiply, FMPYADD, and FMPYSUB instructions. The instruction cache interface and integer
unit are enhanced for superscalar execution of integer instruction pairs. The bus interface and the assist cache are
completely new designs for the PA 7200.

In addition to the performance features, the PA 7200 contains several new architectural features for specialized
applications:
� Little endian data format support on a per-process basis

� Support for uncacheable memory pages

� Increased memory page protection ID (PID) size

� Load/store “spatial locality only” cache hint

� Coherent I/O support.

http://www.hp.com/hpj/feb96/fb96a2.html

February 1996 Hewlett-Packard Journal 2

I-cache
Data

SRAMs

D-cache
Data

SRAMs

Floating-Point
Unit

Runway Bus (64 Bits Wide)

Integer
ALU #1

Integer
ALU #2

TLB
Assist
Cache

System Bus Interface

In
st

ru
ct

io
n

Ca
ch

e
In

te
rf

ac
e

D
at

a
Ca

ch
e

In
te

rf
ac

e

I-cache
Tag

SRAMs

64

Instructions

Address

Tag

Address

64 Data

D-cache
Tag

SRAMs

Fig. 2. Block diagram of the PA 7200 CPU.

17

21

17

Tag21

Address15

The CPU is fabricated in Hewlett-Packard’s CMOS14A process with 0.55-micrometer devices and three-level metal
interconnect technology. The processor chip is 1.4 by 1.5 cm in size, contains 1.3 million transistors, and is packaged in a
540-pin ceramic PGA. IEEE 1149.1 JTAG-compliant boundary scan protocol is included for chip test and fault isolation. Fig.
3 is a photomicrograph of the PA 7200 CPU chip.

Instruction Execution
A key feature of the PA 7100 that is retained in the PA 7200 is an execution pipeline highly balanced for both high-frequency
operation and very few (compared to most current microprocessors) pipeline stall cycles resulting from data, control, and
fetch dependencies.12 The only common pipeline stall penalties are a one-cycle load-use interlock for any cache hit, a
one-cycle penalty for the immediate use of a floating-point result, a zero-to-one-cycle penalty for a mispredicted branch, and
a one-cycle penalty for store-load combinations. The PA 7200 improves on the PA 7100 pipeline by removing the penalty for
store-store combinations.

Fig. 3. PA 7200 CPU chip.

February 1996 Hewlett-Packard Journal 3

This was achieved by careful timing of off-chip SRAMs, which are cycled at the full processor frequency. Removal of the
store-store penalty is particularly helpful for code that has bursts of register stores, such as the code typically found at
procedure calls and state saves.

The PA 7200 features an integer superscalar implementation geared to high-frequency operation similar to the PA 7100LC
processor.3 In a superscalar processor, more than one instruction can be executed in a single clock cycle. When two
instructions are executed each cycle, this is also referred to as bundling or dual-issuing. In previous PA 7100 processors,
only a floating-point operation could be paired with an integer operation. The PA 7200 adds the ability to execute two
integer operations per cycle. This will benefit many applications that do not have intensive floating-point operations. To
support this integer superscalar capability, the PA 7200 adds a second integer ALU, two extra read ports and one extra write
port in the general register stack, a new predecoding block, a new instruction bus, additional register bypassing circuits, and
associated control logic.

Instructions are classified into three groups: integer operations, loads and stores, and floating-point operations. The PA 7200
can execute a pair of instructions in a single cycle if they are from different groups or if they are both from the integer
operation group. Branches are a special case of integer operations; they can execute with the preceding instruction but not
with the succeeding instruction. Double-word alignment is not required for instructions executing in the same cycle. As in
the PA 7100, only floating-point operations can bundle across a cache line or page boundaries. The PA 7200 can also execute
two instructions writing to the same target register in a single cycle.

The PA 7200 contains three instruction buses that connect the instruction cache interface to two integer ALUs and a
floating-point unit. As in the PA 7100, an on-chip double-word instruction buffer assists the bundling of two instructions that
may not be double-word aligned. On every cycle, one or two instructions can come from any of four sources (even or odd
instructions from the cache, or even or odd instructions from the on-chip buffer) and can go to any of the three destination
buses.

The process by which multiple instructions are dispatched to different instruction buses leading to corresponding
execution units is called steering. The PA 7200 has a very aggressive timing budget for steering and instruction decoding
(done in less than one processor cycle); therefore, the steering logic must be fast. In addition, on every cycle, the control
logic needs to track which one or two of the three instruction buses contain valid instructions as well as the order of
concurrently issued instructions. To avoid having superscalar steering and execution decode logic degrade the CPU
frequency, six predecode bits are allocated in the instruction cache for each double word. Data dependencies and resource
conflicts are checked and encoded in predecode bits as instructions are moved from memory into the cache, when timing is
more relaxed. These six predecode bits are carefully designed so that they are optimal for both the steering circuits and the
control logic for proper pipelined execution. Thanks to the optimized design and implementation of these predecode bits
and the associated steering circuits and control logic, this path is not a speed-limiting path for the PA 7200 chip and does not
obstruct its high-frequency operation.

To minimize area, shift-merge and test condition units are not duplicated in the second ALU. Thus shifts, extracts, deposits,
and instructions using the test condition block are limited to one per cycle. Also, instructions with test conditions cannot be
bundled with integer operations or loads or stores as their successors. A modern compiler can minimize the effect of these
few superscalar restrictions through code scheduling, thereby allowing the processor to exploit much of the
instruction-level parallelism available in application code to achieve a low average CPI (cycles per instruction).

Data Cache Organization
Fig. 4 shows the PA 7200’s data cache organization. The chip contains an interface to up to 1M bytes of off-chip direct
mapped data cache consisting of industry-standard SRAMs. The off-chip cache is cycled at the full processor frequency and
has a one-cycle latency.

The chip also includes a small fully associative on-chip assist cache. Two pipeline stages are associated with address
generation, translation, and cache access for both caches, which results in a maximum of a one-cycle load-use penalty for a
hit in either cache. The on-chip assist cache combined with the off-chip cache together form a level-1 cache. Because this
level-1 cache is accessed in one processor cycle and supports a large cache size, no level-2 cache is supported. The ability to
access the large off-chip cache with low latency greatly reduces the CPI component associated with cache-resident memory
references. This is particularly helpful for code with large working data sets.

The on-chip assist cache consists of 64 fully associative 32-byte cache lines. A content-addressable memory (CAM) is used
to match a translated real line address with each entry’s tag. For each cache access, 65 entries are checked for a valid
match: 64 assist cache entries and one off-chip cache entry. If either cache hits, the data is returned directly to the
appropriate functional unit with the same latency. Aggressive self-timed logic is employed to achieve the timing
requirements of the assist cache lookup.

February 1996 Hewlett-Packard Journal 4

Physical Tag 32-Byte Data Line

Physical Address Virtual Address

Assist Cache

Physical Tag 32-Byte Data Line

Main Cache

Virtual Address

Hash

Memory Interface

Main Cache Features:
4K-Byte to 1M-Byte size
Single-Cycle Loads
Pipelined Single-Cycle Stores
Hashed Virtual Indexing

Assist Cache Features:
2K-Byte Fully Associative Organization
Single-Cycle 32-Byte Cache Line Write
Single-Cycle Cache Line Read

Data to/from Functional Units

TLB

Fig. 4. PA 7200 data cache organization.

Lines requested from memory as a result of either cache misses or prefetches are initially moved to the assist cache. Lines
are moved out of the assist cache in first-in, first-out order. Moving lines into the assist cache before moving them into the
off-chip cache eliminates the thrashing behavior typically associated with direct mapped caches. For example, in the vector
calculation:

 for i: = 0 to N do
 A[i] : = B[i] + C[i] + D[i]

if elements A[i], B[i], C[i], and D[i] map to the same cache index, then a direct mapped cache alone would thrash on each
element of the calculation. This would result in 32 cache misses for eight iterations of this loop. With an assist cache,
however, each line is moved into the cache system without displacing the others. Assuming sequential 32-bit data elements,
eight iterations of the loop causes only the initial four cache misses.

Larger caches do not reduce this type of cache thrashing. While modern compilers are often able to realign data structures
to reduce or eliminate thrashing, sufficient compile time information is not always available in an application to make the
correct optimization possible. The PA 7200’s assist cache eliminates cache thrashing extremely well with minimal hardware
and without compiler optimizations.

Lines that are moved out of the assist cache can conditionally bypass the off-chip cache and move directly back to memory.
A newly defined spatial locality only hint can be specified in load and store instructions to indicate that data exhibits
spatial locality but not temporal locality. A data line fetched from memory for an instruction containing the spatial locality
hint is moved into the assist cache like all other lines. Upon replacement, however, the line is flushed back to memory
instead of being moved to the off-chip cache. This mechanism allows large amounts of data to be processed without
polluting the off-chip cache. Additionally, cycles are saved by avoiding one or two movements of the cache line across the
64-bit interface to the off-chip cache.

The assist cache allows prefetches to be moved into the cache system in a single cycle. Prefetch returns are accumulated
independently of pipeline execution. When the complete line is available, one data cache cycle is used to insert the line into
the on-chip assist cache. If an instruction that is not using the cache is executing, no pipeline stalls are incurred.

February 1996 Hewlett-Packard Journal 5

Because the assist cache is accessed using a translated physical address, it adds an inherently critical speed path to the chip
microarchitecture. An assist cache access consists of virtual cache address generation, translation lookaside buffer (TLB)
lookup to translate the virtual address into a physical address, and finally the assist cache lookup. The TLB lookup and
assist cache lookup need to be completed in one processor cycle or 8.3 ns for 120-MHz operation. To meet the speed
requirements of this path a combination of dynamic and self-timed circuit techniques is used.

The TLB and assist cache are composed of content-addressable memory (CAM) structures, which differ from more typical
random-access memory (RAM) structures in that they are accessed with data, which is matched with data stored in the
memory, rather than by an index or address. A typical RAM structure can be broken into two halves: an address decoder
and a memory array. The input address is decoded to determine which memory element to access. Similarly, a CAM has two
parts: a match portion and a memory array. In the case of the assist cache, the match portion consists of 27-bit comparators
that compare the stored cache line tag with the translated physical address of the load or store instruction. When a match is
detected by one of the comparators, then that comparator dumps the associated cache line data.

Fig. 5 shows the timing of an access to the TLB and assist cache.

PRECHG2

PRECHG1

Cache RAM Read

Cache READ_CK

Cache Clock

Dummy Read

TLB READ_CK

CK

36

Dummy
Driver

Dummy
Entry

Dummy
Entry

Dummy
Driver

Dummy
Entry

Load
Aligner

Sense
Amplifiers

Virtual
Address 36

VADDR

64

Data Bus

64

64

36

VADDR

Dual-Rail
Address
Buffer

TLB
CAM
Array

128�36
Bits

CK CK

TLB
Self-

Timed
Read

Control

128

TLB
CAM
Match

TLB
Write

Control

CK

Cache
Self-

Timed
Read

Control

Cache
Write

Control

64

Cache
CAM
Match

CK

Data
Driver/
Data
Latch

128

TLB
RAM
Write

128

TLB
RAM
Read

TLB
READ_CK

Dummy
Read

28

TLB
RAM
Array

128�28
Bits

PADDR

28

PADDR

27

CADDR

27

CADDR

27

27

CK

Cache Miss Address
and Page Offset Address

MADDR

Dual-Rail
MUX

Address
Driver

Cache
CAM
Array

64�27
Bits

Store
Merger

64

TLB
RAM
Write

64

TLB
RAM
Read

PRECHG2

PRECHG1

MADDR

Cache
RAM
Array

64�256
Bits

Cache
READ_CK

Cache Clock

Fig. 5. PA 7200 TLB and assist cache timing.

This single 8.3-ns clock cycle path is broken into multiple subsections using self-timed circuits. An access begins when the
single-ended virtual address is latched and converted to complementary predischarged values VADDR and VADDR in the TLB
address buffer on the rising edge of CK. These dual-rail signals are then used to access the CAM array. A dummy CAM array
access, representing the worst-case timing through the CAM array, is used to initiate the TLB RAM access. If any of the CAM

February 1996 Hewlett-Packard Journal 6

entries matches the VADDR , then the completion of the dummy CAM access, represented by TLB READ_CK , enables the TLB
read control circuits to drive one of the TLB RAM read lines. The precharged RAM array is then read and a differential
predischarged physical address is driven to the assist cache. A similar access is then made to the assist cache CAM and
RAM structures to produce data on the rising edge of CK. A precharged load aligner is used to select the appropriate part of
the 256-bit cache line to drive onto the data bus and to perform byte swapping for big-to-little-endian data format
conversion. Although this path contains tight timing budgets, careful circuit design and physical layout ensure that it does not
limit the processor frequency.

The basic structure of the external cache remains unchanged from the PA 7100 CPU. Separate instruction (I) and data (D)
caches are employed, each connected to the CPU by a 64-bit bidirectional bus. The cache is virtually indexed and physically
tagged to minimize access latency. The I-cache data and tag are addressed over a common address bus, IADH. The D-cache
data has a separate address bus, DADH, and the D-cache tag has a separate address bus, TADH. Used in conjunction with an
internal store buffer for write data, the split D-cache address allows higher-bandwidth stores to the D-cache. Instead of a
serial read-modify-write, stores can be pipelined so that TADH can be employed for the tag read of a new store instruction
while DADH is used to write the data from the previous store instruction.

As in the PA 7100 CPU, the PA 7200 CPU cache interface is tuned to work with asynchronous SRAMs by creating special
clock signals for optimal read and write timing. The cache is read with a special latch edge that allows wave pipelining, that
is, a second read is launched before the first read is actually completed. The cache is written using two special clocks that
manipulate the write enable and output enable SRAM controls for a minimum total write cycle time.

The design team worked closely with several key SRAM vendors to develop a specification for a 6-ns SRAM with enhanced
write speed capabilities. These new SRAMs allow both of the caches to operate at the CPU clock frequency. The CPU can be
shipped with equal-sized instruction and data caches of up to 1M bytes each. As in the PA 7100 CPU, a read can be finished
in one clock cycle. However, to match the bandwidth of the Runway bus and to increase the performance of store-intensive
applications, a significant timing change was made to improve the bandwidth for writes to the cache. The PA 7200 CPU
achieves a quasi-single-cycle write: a series of N writes requires N+1 cycles. The one-cycle overhead is required for turning
the bus around from read to write, that is, one cycle is required to turn off the SRAM drivers and allow the CPU drivers to
take over. No penalty is incurred in transitioning from write to read.

Prefetching Mechanisms
A significant amount of execution time is spent waiting for data or instructions to be returned from memory. In an HP 9000
K-class system running transaction processing applications, an average of about one cycle per instruction can be attributed
to the processor waiting for memory. The total CPI for such an application is about 2. Execution time can therefore be
greatly reduced by reducing the number of cycles the processor spends waiting for memory. The PA 7200 incorporates
hardware and software prefetching mechanisms, which initiate memory requests before the data or instructions are used.

Instruction Prefetching. The PA 7200 implements an efficient instruction prefetch algorithm. Instruction fetch requests are
issued speculatively ahead of the instruction execution stream. Multiple instruction prefetch requests can be in flight to the
memory system simultaneously. Issuing multiple prefetches ahead of the execution stream works well when linear code
segments are initially encountered. This instruction prefetching scheme yields a 9% performance speedup on transaction
processing benchmarks.

Data Prefetching. The PA-RISC instruction set includes a class of instructions that modify the base value in a general register
by an immediate displacement or general register index value. An example is LDWX,m r1(r2),r3. The LDWX (load word
indexed) instruction with a modify completer (,m) loads the value at the address contained in register r2 into register r3, and
then adds r1 to r2 (i.e., load r2 –> r3; r1 + r2 –> r2). The PA 7200 can use this class of instructions to speculate what data may
soon be accessed by the code stream. If the load r2 in the above example is a cache miss, a prefetch is issued to the address
calculated by the base register modification (r1 + r2). The PA 7200 uses this base register modification to speculate where a
future data reference will occur. For example, if r1 contains line 0x40 and r2 contains line 0x100 and no lines are initially in
the cache, then this instruction initiates a request for line 0x100 in response to the cache miss and line 0x140 is prefetched.
If the line 0x140 is later used, some or all of the cache miss penalty is avoided.

When a line is prefetched, it is moved into the assist cache and tagged as being a prefetched line. When a prefetched line is
later referenced by the code stream, another prefetch is launched. Continuing with the above example, if this load
instruction were contained in a loop, on the first iteration of the loop lines 0x100 and 0x140 would be requested from
memory. On the second iteration line 0x140 is referenced. The assist cache detects this as the first reference to a prefetched
line and initiates a prefetch of line 0x180. This allows memory requests to stay ahead of the reference stream, reducing the
stall cycles associated with memory latency.

The PA 7200 allows four data prefetch requests to be outstanding at one time. These prefetches can be used for either
prefetches along multiple data reference streams or farther ahead on one data reference stream. Returning to the vector
example,

 for i : = 0 to N do
 A[i] : = B[i] + C[i] + D[i]

February 1996 Hewlett-Packard Journal 7

each new cache line entered will cause four new prefetch requests to be issued: one for each vector. On the other hand, if
the processor were doing a block copy:

 for i : = 0 to N
 A[i] : = B[i]

then it could prefetch two lines ahead of each reference stream.

Reducing Average Memory Access Time
A number of features have been combined in the PA 7200 to minimize the average memory access time (the average number
of cycles used for a memory reference).13 These features together provide excellent performance speedups on a number of
applications that stress the memory hierarchy. Fig. 6 compares the performance of the PA 7200 and the PA 7100 on a
number of technical benchmarks. To minimize the average memory access time associated with cache hits, the large
low-latency off-chip cache from the PA 7100 design has been retained and enhancements made to allow single-cycle stores.
The PA 7200 improves on the PA 7100 by reducing cache misses by minimizing compulsory, capacity, and conflict cache
misses.

PA7100 @99MHz

2.0�

PA7200 @120MHz

2.1�

2.2�

1.8�

gausian90 naskar swm256 tomcatvsu2coransys

1.5�

2.0�

Fig. 6. A number of features that minimize the average memory access time allow the PA 7200 CPU

to outperform its predecessor the PA 7100 on technical benchmarks.

The PA 7200 reduces conflict misses by adding effective associativity to entries of the main cache. This is done without the
overhead required for a large multiset associative cache. Traditionally caches have been characterized as direct mapped,
multiset associative, or fully associative. The PA 7200 assist cache effectively adds dynamically adjusted associativity to
main cache entries. As miss lines are brought into the assist cache, the entries with the same cache index mapping in the
main cache are not immediately replaced. This allows multiple cache lines with the same index to reside in “the cache” at
the same time. All assist cache entries can be filled with lines that map to the same off-chip cache index, or they can be
filled with entries that map to various indexes. This eliminates the disastrous thrashing that can occur with a direct mapped
cache, as discussed earlier.

The PA 7200 reduces compulsory cache misses by prefetching lines that are likely to be used. When the software has the
information necessary at compile time to anticipate what data is needed, the base register modification class of load and
store instructions can be used to direct prefetching. If no specific direction is added to code or if old code is being run, then
base register modifying loads and stores can still be used by the hardware to do effective prefetching. The processor can
also be configured to use loads and stores that do not modify base registers to initiate speculative requests. Because
memory bandwidth is limited, care was taken to minimize the amount of bad prefetching while maximizing the speedup
realized by issuing memory requests speculatively. Both old code traces and new compiler optimizations were investigated
to determine the best set of prefetching rules.

In addition to the large caches supported by the PA 7200, capacity misses are reduced by selectively allocating lines to the
off-chip cache if they benefit from being moved to the off-chip cache. More effective use can be made of a given cache
capacity by only moving data that exhibits temporal locality to the off-chip cache. The assist cache provides an excellent
location for use-once data. The spatial locality only (,SL) hint associated with load and store instructions allows code to
identify which data is use-once (or simply too large to be effectively cached), thereby reducing capacity misses. The ,SL hint
is encoded in previously reserved load and store instruction fields. Large analytic applications and block move and clear
routines achieve excellent speedups from this new cache hint.

February 1996 Hewlett-Packard Journal 8

Bus Interface
The PA 7200’s Runway bus interface is carefully tuned to the requirements and capabilities of the processor core. The
interface has several features that minimize transaction latency, reduce processor cost, and take advantage of particular
attributes of the CPU core to simplify interface design. The bus interface contains a cache coherence queue and transaction
buffers, arbitration logic, and logic to support multiple processor-to-bus-frequency ratios. The bus interface also implements
an efficient double snoop† algorithm for coherent transaction management.

The PA 7200 connects directly to the Runway bus without transceivers or interface chips. Without this layer of external
logic, system cost is reduced while performance is increased because of lower CPU-to-bus latency. Special system and
circuit designs allow the Runway bus to run at a frequency of 120 MHz while maintaining connectivity to six loads.
Negative-hold-time receiver design and tight skew control prevent races when drivers and receivers operate from the same
clock edge. A read transaction is issued in one bus cycle and the 32-byte memory return is transferred in four cycles,
resulting in a peak sustainable bandwidth of 768 megabytes per second. To take advantage of the high bus bandwidth, the
PA 7200 can have up to six memory reads in flight at the same time.

To minimize read transaction latency, the PA 7200 asserts and captures arbitration signals on the half cycle (phase), as
shown in Fig. 7. The processor core communicates its intent to initiate a transaction in the first phase, allowing the interface
to assert its bus arbitration signal on the second phase.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6

Runway Bus:

Bus
Interface:

CPU Core:

Enable
Arbitration
Bypass

Transaction
Request

Enable
Read
Bypass

Read
Address
Available

Calculate
Address
Parity

Latch
Arbitrations,
Calculate
Winner

Assert
Arbitration on
Runway Bus

Drive
Address on
Runway Bus

Read Transaction

CLK

ARB_OUT

ADDR_DATA

Fig. 7. With numerous bypass paths, latency between the CPU core and the Runway bus is minimized. As soon as the CPU

detects a cache miss, the bus interface arbitrates for the system bus in half a cycle. As soon as the cache miss address is

available, it is routed to the interface in half a cycle, where its bus parity is generated in another half-cycle. Performance

is maximized in the common case of little bus traffic, when the CPU wins bus arbitration immediately.

The transaction address information, only available on the third phase, is then forwarded from the processor core to the bus
interface. In the common case where there is no contention for the Runway bus, the address is driven onto the bus in the
next cycle. Read and write buffers, included in the bus interface to decouple the CPU core in case arbitration is not
immediately won, are bypassed in the common case to reduce latency.

Transactions from the read and write buffers are issued by the bus interface with fixed priorities. Snoop data has the highest
priority, followed by read requests, then the write of cache victims. When the memory controller cannot handle new read
requests and the read and write buffers are full, the bus interface will issue the write transaction before the read to make
best use of the bus bandwidth available.

Since transactions on the Runway bus are always accepted (and never rejected or retried at the expense of bus bandwidth),
each processor acting as a third party must be able to accept a burst of coherent transactions. Since there are times when
the CPU core is busy and cannot accept a snoop, the bus interface implements a ten-transaction-deep queue for cache
snoops and a three-transaction-deep queue for TLB snoops. With deep coherency queues, a large number of coherent
transactions from several processors can be outstanding without the need to invoke flow control.

Processor-to-bus frequency ratios of 1:1, 3:2, and 4:3 are provided for higher-frequency processor upgrades. Using a ratio
algorithm that requires the bus clock to be synchronous with the processor clock ensures that the ratio logic does not

† A snoop, also known as a cache coherency check, is the action performed by all processors and I/O adapters when they observe a coherent transaction
issued by another module. Each module performing the snoop must check its cache for the address of the current transaction, and if found, change the
state of that cache address. Cache state transitions are described in Article 2.

http://www.hp.com/hpj/feb96/fb96a2.html

February 1996 Hewlett-Packard Journal 9

 impart synchronization delays typical of systems with asynchronous clock domains. For any ratio, the worst-case delay is
less than one CPU clock cycle, and in the best case, data transmission does not incur any delay.

To minimize processor pipeline stalls resulting from multiprocessor interference, transactions at the head of the coherency
queue are forwarded to the CPU core in two steps. First, the core is sent a lightweight query, which steals one cycle of cache
bandwidth. A low-latency response is received from the off-chip and assist caches. Only when a cache state modification is
required is a second full-service query forwarded to the CPU core. Since the vast majority of cache snoops result in misses,
this double snoop approach allows the PA 7200 to achieve higher multi– processor performance without the added cost and
complexity of a dual-ported cache or duplicate cache tags.14

PA 7200 Circuit Translation
Most of the PA 7200 circuit designs, artwork, and physical design methodology are based upon and leveraged from the PA
7100 CPU, which was designed using HP’s CMOS26 IC process, tools, and libraries. However, aggressive performance and
cost goals required that the PA 7200 be fabricated using the faster, denser CMOS14 IC process also under development. To
completely redesign and lay out existing PA 7100 circuits for the CMOS14 process would have been an inefficient use of
resources and would have greatly extended the design phase. Therefore, the entire PA 7200 was designed using the existing
CMOS26 technology, and the artwork was then automatically translated to and reverified in the CMOS14 process.

Unfortunately, automatic translation faced two global issues. First, CMOS26 is a 5.0V (nominal) process but CMOS14 was
originally specified for 4.0V operation. Simulations showed that the speed of a few common circuit topologies did not scale
linearly into the target technology because of the lower supply voltage. Detailed investigation by the CMOS14 development
group concluded that raising the supply voltage by 10% was feasible and the process was fully qualified for operation at 4.4V.
This was sufficient for these circuits to meet the speed improvement goal.

Secondly, CMOS26 layout rules do not scale uniformly into the respective rules for CMOS14, since each component of a
process technology has different physical and manufacturing constraints. A simple gate-shrink algorithm, which only reduces
FET effective gate length, could have provided a 20% transistor speed improvement. Without overall area reduction, the
extra PA 7200 functionality dictates a die size much larger than the PA 7100 and this approach would result in slower wire
speeds and a sharp increase in manufacturing cost. With aggressive scaling, a more complex translation algorithm, and a
limited number of engineering adjustments to the layout and electrical rules, the CMOS14 version achieves a 20% overall
speed improvement along with a 38% power reduction from the original CMOS26 design.

Translation Methodology. The methodology that was developed accommodates CMOS26 designs and translated CMOS14
artwork in parallel, is generally transparent, and merges smoothly with the existing design environment. A hierarchical
(block-level) translation methodology was chosen because it provides many advantages over the more traditional flat
(mask-level) translation. Important reasons for selecting this approach were:
� Algorithm flexibility. The optimal translation algorithm is not required to guarantee that every pathological

CMOS26 layout, and more important, all existing PA 7100 blocks are translated to a legal CMOS14 layout as long
as a manageable number of violations result and are easily correctable by hand. Hierarchical methods imply edit-
ing only unique instances of a violation at the block level, rather than the entire set on a flattened mask.

� Design modularity. Having parallel hierarchies containing both CMOS26 and CMOS14 blocks enables additional
flexibility. Translated artwork can be read directly by the front-end editors for electrical simulation and other pur-
poses. On the top-level routing blocks, CMOS14 layouts using a tighter metal pitch were a necessary alternative
to the translated CMOS26 versions.

� Concurrent methodology. Translated artwork is available for mask generation along with the original block. Flat
translation is serialized and for complex algorithms implies a costly delay after each design release. Moreover,
having a complete, hierarchical CMOS14 artwork database allowed subsequent chip revisions to be released using
incremental changes made directly to the CMOS14 artwork.

Many operations in the translation algorithm are complicated by hierarchical junctions (these would disappear with a flat
translation.) A hierarchical junction is any connection between objects in separate blocks. If individual artwork features
touching or extending beyond hierarchical boundaries are further shrunk by a fixed distance after being reduced by the
scaling coefficient, gaps will occur at the parent junctions that cannot always be filled automatically. A subtle but more
troublesome scaling problem is caused by snapping the location of child instances to the grid resolution, which creates
shape misalignments or gaps at parent-child or child-child junctions if origins round in a different direction. This effect can
be cumulative, and becomes significant for junctions that span multiple hierarchical levels. Increased database size and
consistency checking are other drawbacks of a block-oriented translation.

A final check was added after CMOS14 layout verification to hierarchically compare ports, signals, and connectivity
between the CMOS26 and CMOS14 artwork netlists. This was necessary since hand corrections made to the translated
CMOS14 layout could introduce new design errors.

Translation Algorithm. Any scaling coefficient should ensure that all minimum widths, spaces, and exact-size shapes from
CMOS26 be translated to CMOS14 such that each edge pair snaps to the grid resolution (0.05-µm) in the same direction.
There are several natural solutions to ensure that 1.0-µm (drawn) minimum features in CMOS26 always become 0.6-µm
minimum features in CMOS14. For example:

February 1996 Hewlett-Packard Journal 10

� Scale by α = 0.8 and then further shrink interconnect by 0.2 µm.

� First shrink interconnect by 0.2 µm and then scale by
α = 0.75.

The second option is only practical for library blocks since it is too aggressive for interconnect with minimum contacted
pitch and provides less margin for the effects of uneven grid snapping. The detailed algorithm is based upon the first option,
with additional manipulations of n-well regions, FET gate extensions, contact sizes, interconnect contact enclosure, and
interlayer contact spacing. These operations have parasitic effects which can create notches and narrow corners and are
usually correctable by automatically filling new width and spacing violations.

There were still a residual number of geometrical cases that could not be fully translated by any reasonable tool or
heuristic. In these cases we either waived the layout rules where margin was available or made extra efforts to repair rule
violations by hand. Although many of these violations did occur, the vast majority resulted either from the hierarchical
phenomena described earlier or from fundamental scaling issues with certain contact structures and latch-up prevention
rules. In no case was any significant block relayout required, however.

Scaling-Sensitive Circuits. Although algorithmic translation of PA 7200 circuits generally improves electrical performance and
decreases parasitic effects, there are a few exceptional circuits with different characteristics. In general, these were
abnormally sensitive to transistor sizing ratios, noise caused by coupling, voltage shifts caused by charge sharing, small
variations in processing parameters, or the reduced 4.4V high level. Additionally, total resistance in the third layer of metal
can increase after translation and cause routing delays to improve less than the basic scaling assumptions predict.

Summary
The design goal for the PA 7200 was to increase the performance of Hewlett-Packard computer systems on real-world
applications in a variety of markets while maintaining a high degree of price/performance scalability and a low system
component count. General application performance is improved through an increase in operating frequency, a second
integer ALU for enhanced superscalar execution, and improved store instruction performance. For applications that operate
on large data sets, such as typical analytic and scientific applications, the hardware prefetching algorithms and fully
associative assist cache implemented in the PA 7200 provide excellent performance increases. In addition, the processor
includes a high-bandwidth, low-latency multiprocessor bus interface to support cost-effective, high-performance, one-way
to four-way multiprocessor systems, which are ideal for technical or commercial platforms, without additional interface
chips. Additionally, the PA 7200 is scalable from desktop workstations to many-way multiprocessor corporate computing
platforms and supercomputers.

Acknowledgments
The authors would like to thank all the different teams who contributed to the successful design of the PA 7200 chip. The
design and implementation was primarily done by many individuals from the Computer Technology Laboratory and the
Cupertino Systems Laboratory in Cupertino, California and several individuals from the Engineering Systems Laboratory in
Fort Collins, Colorado. Many thanks also to several teams whose work was responsible for many key design decisions
made. This includes the Integrated Circuits Business Division in Fort Collins and the Systems Performance Laboratory and
the California Languages Laboratory in Cupertino.

References
1. M.J. Mahon, et al, “Hewlett-Packard Precision Architecture: The Processor,” Hewlett-Packard Journal, Vol. 37, no. 8, August

1986, pp. 4-21.
2. R.B. Lee, “Precision Architecture,” IEEE Computer, Vol. 22, no. 1, January 1989, pp.79-91.
3. P. Knebel, et al, “HP’s PA 7100LC: A Low-Cost Superscalar PA-RISC Processor,” Compcon Digest of Papers, February 1993, pp.

441-447.
4. E. Delano, et al, “A High-Speed Superscalar PA-RISC Processor,” Compcon Digest of Papers, February 1992, pp. 116-121.
5. M. Forsyth, et al, “CMOS PA-RISC Processor for a New Family of Workstations,” Compcon Digest of Papers, February 1991, pp.

202-207.
6. D. Tanksalvala, et al, “A 90-MHZ CMOS RISC CPU Designed for Sustained Performance,” ISSCC Digest of Technical Papers,

February 1990, pp. 52-53.
7. B.D. Boschma, et al, A 30-MIPS VLSI CPU,“ ISSCC Digest of Technical Papers, February 1989, pp. 82-83.
8. J. Yetter, et al, “A 15-MIPS 32b Microprocessor,” ISSCC Digest of Technical Papers, February 1987, pp. 26-27.
9. D. Fotland, et al, “Hardware Design of the First HP Precision Architecture Computers,” Hewlett-Packard Journal, Vol. 38, no. 3,

March 1987, pp. 4-17.
10. G. Kurpanek, et al, “PA 7200: A PA-RISC Processor with Integrated High-Performance MP Bus Interface,” Compcon Digest of

Papers, February 1994, pp. 375-382.
11. E. Rashid, et al, “A CMOS RISC CPU with on-chip Parallel Cache,” ISSCC Digest of Technical Papers, February 1994.

February 1996 Hewlett-Packard Journal 11

12. T Asprey, et al, “Performance Features of the PA 7100 Microprocessor,” IEEE Micro, June 1993, pp. 22-35.
13. J. Hennessy and D. Patterson, Computer Architecture, A Quantitative Approach, Morgan Kaufmann Publishers, 1990.
14. K. Chan, et al, “Multiprocessor Features of the HP Corporate Business Servers,” Compcon Digest of Papers, February 1993, pp.

330-337.

� Go to Article 4
� Go to Table of Contents
� Go to HP Journal Home Page

http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/feb96/toc-02-96.html
http://www.hp.com/hpj/feb96/fb96a4.html

