
��!����� �����
�$��!!'
������� ��"����� � � � � � � ��

���
������ ���	
���� ��	� �
�

���
��� �������

DSM has its roots in the late eighties—the early days of C++. Compilers didn’t
support exception handling then. Conventional error handling by passing error
codes up the return stack is a prohibitively code-intensive approach in a large
software project with many nested procedural levels such as HP PE/SolidDe-
signer. Therefore, we had to implement our own exception handling mechanism
which is very similar to what has been implemented in today’s C++ compilers.

HP PE/SolidDesigner’s code is divided into code modules. Each module has its
own module information object containing module-specific error codes and mes-
sages. In case of an error condition inside a module, the code triggers the excep-
tion mechanism by throwing a pointer to the module information object.

Code that wants to catch an exception inspects the module information object
returned by the exception mechanism and acts accordingly. If it has already allo-
cated resources, they are cleaned up and returned. The exception can then be
ignored (and suppressed), or it can be escalated to the next code level.

The listing below shows a code example for this. You may notice the similarities to
the exception handling mechanism introduced with C++ 3.0. Now that the throw/
catch mechanism is finally available in many C++ compilers on various platforms,
we will be able to adopt it with only a few changes in the code.

int process_file(const char *const fname)
{
 int words = 0;
 FILE *file = 0;

 TRY
 file = open_file(fname);
 words = count_words(file);
 close_file(file);
 file = 0;
 RECOVER
 if (file) { // clean up resources
 close_file(file);
 file = 0;
 }

 // handle specific exceptions
 if (dsm_exception_code == F2_CORE::info_ptr) {
 switch(F2_CORE::errno) {
 case F2_CORE::BREAK_RECEIVED: // User has cancelled processing
 // We won’t escalate this “soft” exception.
 handle_break();
 break;
 case F2_CORE::MEM_OVL: // Out of memory
 // Free memory blocks allocated here, then escalate the problem.
 free_my_mem();
 ESCAPE(dsm_exception_code); // “throw” in C++ 3.0
 break;
 default:
 break;
 }

 } else {
 // Pass up all other exceptions.
 ESCAPE(dsm_exception_code);
 }

 END_TRY

 return words;
}

Development Support
To find problems proactively, DSM stresses the importance of checking precondi-
tions, invariants, and postconditions. It offers convenient assertion macros and a
context dependent run-time debugging system which uses debug module objects.

These debug module objects hold their current debug level which can be checked
using macros and set during run time. A debug module is associated with a certain
code area. This allows fine-grained control for debug checks and messages. We
think this control is important for the acceptance of a debug system; the program-
mer will ignore debug messages if there are too many, and won’t find the system
useful if it doesn’t deliver enough detail where needed.

Macros are provided to reduce typing and #ifdef constructs:

 bool compare(const char *s1, const char *s2)
 {
 ME_MODULE_STOPWATCH(“compare”, foo); // for run-time profiling

 // trace program flow
 if (DEBUG_LEVEL(foo) >= DEBUG_CALLS) {
 fprintf(DEBUG_STREAM(), “compare called”);
 }

 DSM_ASSERT(s1 && s2); // check precondition

 // Now calculate the result
 ...

 DSM_ASSERT(some_condition); // check post-condition
 return TRUE;
 }

DSM also defines special debug modules to switch on sophisticated debugging
tools. There are tools to find memory leaks, to calculate checksums for objects
(allowing us to detect illegal changes), and to create run-time profiles for the code.

In a software package as large as HP PE/SolidDesigner, the common UNIX profil-
ing tools were not applicable. Therefore, we had to build our own set of versatile,
efficient and highly precise utilities. You can define a stopwatch for any function
that might need profiling, and you start and stop the stopwatch using the debug
module mechanism. The results can be analyzed, producing a hierarchical call
graph that shows what portion of the run time was spent in the individual functions.
We can also find out the amount of memory allocated for a function at run time
using these tools.

����!� ����� �"��!����� " ���� !��� �������!���� ��� �! � !&��� !�����

��� � !��� ��� � !��� ���!���� !�� !��� ��!�!&� � ����� ��!���� $����

� � �� ��� ����� ���� ����!���� �� ��$� ��!�!&� ����� !��� ��!�� ��� !��

������ ���� ��$� ��!�!&� � � ��!"����� !�� !��� ��!�!&� ��������� 	���!'

���� ��� ��!�!&� ����� �� ��#��� !&��� ��������! � �� #��!"��

��� !�"�!��� �"��!����� $����� � � �� ���� � � �� ����"���� ������!

��� 	���

Entering the New Entity into a Dictionary.�
���� $�� ����!�� ��

��!�&� ��� �� ���!�����&� !��!� ���!��� � !��� #��!"��� ��!�!&� �����

��� !��� ����� ���� !��� ��$� ����� ����� � ��� ����� �����&�� ��� �

#��"� � $���� ��� " ��� ��� ����!��� ���#�� ����

Reading the Entity Trailer. ����� !��� ��!�!&� � � �������� !��� ��!�!&

�������� �� "�� � ���!���� �&� �������� !��� ��!�!&� !�������� ���

����!� ������� !�� ��� ��� ��!�������� �#������� �����!����� �"!� �!

���� � �� �� $���� $�� ��� ����� !��� �&������ ��!"��� ��� !��

 & !���� ��� ���!������ �������� !��!� ��$� ��!�!&� !&�� � ���� ��

����!��� ���� ���� !����� �&��������&�� ���� �%������ �&� �� !����'

���!&� ���"���� ����� !������ ��� ��!�!&� ��!$����� !�� �� ��!�!��

