Better Models or Better Algorithms?
Techniques to Improve Fault Diagnosis

The simple stuck-at fault model paired with a complex fault diagnosis
algorithm is compared against the bridging fault model paired with a
simple fault diagnosis algorithm to determine which approach produces

the best fault diagnosis in CMOS VLSI circuits.

by Robert C. Aitken and Peter C. Maxwell

Failure analysis is an important task for continuous improve-
ment of both the quality of shipped ICs and the underlying
fabrication process. Fault diagnosis (also called location) can
aid the failure analysis process by producing a list of candi-
date faults given a set of observed tester failures. These
faults are then mapped to potential defect sites, allowing a
failure analysis engineer to target a specific and manageable
portion of the chip.

Improvements to fault diagnosis have tended to be either
improvements in fault modeling!2:3:4 or improvements in
diagnostic heuristics and algorithms.5.6.78 In this paper we

Bridging and Stuck-At Faults

The most common approach for modeling IC defects is the stuck-at fault model.1
This model states that defective lines in a circuit will be permanently shorted to
either the power supply (stuck-at 1) or ground (stuck-at 0). The model has been
popular for test generation and fault simulation because it is simple to use and
because a complete stuck-at test set thoroughly exercises the device under test
(it requires that both logic values be observed on all lines in a circuit).

With the advent of CMOS integrated circuit technology, the connection between
the stuck-at fault model and actual defects has become somewhat tenuous. This
is less important from a test generation perspective, since tests for stuck-at faults
tend to be excellent tests for other types of defects as well.2 For diagnosis, however,
an accurate fault model might be more important. In the accompanying article, we
consider bridging,3 which extends the stuck-at model by allowing a defective line
to be shorted to any other line in the circuit, not just the power and ground lines.
Unlike the simpler stuck-at model, there are numerous variations of the bridging
fault model, depending on which bridges are considered (all possible versus layout-
based), and how they are presumed to behave (wired AND, wired OR, dominant
signal, analog, etc.). Our model* considers possible bridges extracted from layout
and models their behavior according to the relative signal strengths of the driving
transistors.

References

1. R.D. Eldred, “Test Routines Based on Symbolic Logical Statements,” Journal of the ACM,
Vol. 6, 1959, pp. 33-36.

2. T.W. Williams and K.P. Parker, “Design for Testability—A Survey,” Proceedings of the IEEE,
Vol. 71, January 1983, pp. 98-112.

3.K.C.Y. Mei, “Bridging and Stuck-at Faults,” IEEE Transactions on Computers, Vol. C-23, July
1974, pp. 720-727.

4. P.C. Maxwell and R.C. Aitken, “Biased Voting: A Method for Simulating CMOS Bridging
Faults in the Presence of Variable Gate Logic Thresholds,” Proceedings of the International
Test Conference, 1993, pp. 63-72.

110 February 1995 Hewlett-Packard Journal

*

attempt to analyze the relative contributions of models and
algorithms by comparing the diagnostic ability of the simple
stuck-at fault model paired with a complex location algo-
rithm to the complex and realistic bridging fault model
paired with a simple location algorithm. These models and
algorithms are compared both on known bridging defects
from actual chips, and since the available sample of known
bridging faults is small, on a larger sample of simulated
bridging faults.

Only voltage testing is considered in this analysis. In addi-
tion, we employ a single fault model in all cases, both for
simplicity and because in many of the cases of interest for
diagnosis, single-site defects are more likely. A part that
failed its functional package test, for example, probably con-
tains only a single defect, or it would not have passed its
numerous tests at the wafer level and its parametric tests at
the package level.

We consider only full-scan circuits in this paper, since full-
scan circuitry continues to be more amenable to diagnosis
than nonscan or partial-scan circuitry. The main reason for
this is that full scan does not require the fault models to pre-
dict future states accurately, since scan circuitry reloads the
state after every test vector. This reduces the number of po-
tential detections, and more significantly, reduces the depen-
dency between potential detections, which can greatly com-
plicate fault diagnosis. We find that about 10% of returned
parts have failing scan chains and cannot be diagnosed, but
for the remainder, the improvement in diagnostic accuracy is
worth the costs of full-scan circuitry.

Fault Diagnosis Methodology

The fault diagnosis methodology is part of the overall failure
analysis process. Not all failing chips are selected for failure
analysis. Some typical candidates include chips that pass
their component test but fail at board test, chips that fail
component test in a similar fashion, and field returns. Fault
diagnosis takes failing test vectors* as input and returns a set
of potential defect sites. Since these sites must be physically
examined by a failure analysis engineer, it is important that
there not be too many of them. Fig. 1 shows the tools we
use and the files created during fault diagnosis.

A given chip test consists of a set of hundreds or thousands of individual test vectors. On a
given bad chip some of these vectors will produce outputs that fail the test, and it is these
vectors that constitute the failing test vectors.

[Hewlett-Packard Company 1995

Operations Performed Once per Circuit

Extended
Test Vectors

Observed
Failures

Coarse
Resolution

Vector Fault
Dictionary

Fault
Simulation

Potential
Faults List

Detailed Fault
Dictionary

Fine
Resolution

ATPG = Automatic Test Program Generation

Likely Fault
Sites

Fig. 1. Fault diagnosis tools and files.

Test Generation for Diagnosis. Scan vector sets for production
test are usually optimized to achieve maximum single
stuck-at fault coverage with a minimum number of vectors.
This allows test costs to be reduced without compromising
quality. A side effect of this process is that many faults tend
to fail on the same set of vectors, making it difficult to distin-
guish between faults when using a vector fault dictionary,?
which contains only failing test vectors. We improve the diag-
nostic resolution of production test vector sets by attempting
to generate additional tests to distinguish between stuck-at
faults which have identical failing behavior in the production
set. This method seeks to maximize the diagnostic capability
measures described in reference 10. The vectors produced
from this effort are called an extended vector set.

The second shortcoming of production test sets is their re-
liance on the single stuck-at fault model. Stuck-at test sets
can also be extended by vectors to target other faults such as
bridging faults and transistor stuck-on/off faults. For the test
sets used in our model, such faults were not explicitly tar-
geted.

Fault Location Software. Once an extended vector set is avail-
able, it can be used in the diagnostic process. To avoid the
large amounts of data associated with detailed fault dictio-
naries, we generate a vector fault dictionary, or fault coverage
matrix (see Fig. 2). As with test vector generation, dictionary
generation is performed only once for a given chip design.

The remaining steps are run on individual failing chips.
Failing chips are run on the tester and their observed failures
(test vectors and outputs where failures are observed) are
logged. For chips with numerous failures, only the first few
hundred failures are typically recorded. Diagnosis is a two-
step process. Coarse diagnostic resolution is obtained by
using the vector fault dictionary and the vectors from the

[J Hewlett-Packard Company 1995

observed failures to reduce the potential fault list from all
faults to a manageable number.

The coarse resolution process eliminates the vast majority of
faults from consideration. A more extensive fault simulation
is then performed (using fast fault simulation techniques!?)
on the remaining faults to construct a detailed fault dictio-
nary, showing not only which vectors are expected to fail,
but also the scan elements and output pads where errors are
expected to be seen. The output of this simulation is then
compared with the tester data, and faults that match are sent
on to failure analysis. This two-step process has been suc-
cessful at reducing failure data and diagnosis time and pre-
dicting defect sites.

The success of the diagnostic software depends on the accu-
racy of the fault models and the ability of the algorithms to
deal with unmodeled defects. The next section discusses the
models and algorithms we selected for evaluation.

Fault Models and Algorithms

Improvements in the diagnosis process can be obtained by
improving the fault models and the heuristics of the algo-
rithms. Although previous work5:6,7:8,12 has concentrated on
the heuristics of algorithms, some results are available for
diagnosis using more complex fault models,3 often using
Iqdq*>13 Waicukauski et al'? reported that their diagnosis
method would work on bridging faults. Pancholy et all4
developed a simple test chip to examine the behavior of
stuck-at and transition faults on silicon. Millman et all> ex-
amined the relationship between simulated bridging faults
and stuck-at fault dictionaries, using an early version of the
“voting model”® for bridging simulation. Our work builds on
these results by examining the behavior of actual bridging
defects on silicon and performing simulation using biased
voting,4 which is an extension of the voting model that takes
logic gate thresholds into account.

We examine the relative effectiveness of two approaches to
diagnosis: the simple stuck-at fault model with a complex

* lydq is the quiescent drain current.

A, B, C = Circuit Outputs Where Failures Are Observed

X C L
H L
H L
Contents of Vector Fault Dictionary Contents of Detailed Fault Dictionary
Type of Failing Test Type of Failing Vectors +
Fault Vectors Fault Circuit Outputs
F1 1,35 F1 1-A
F2 1,2 3-A B
F3 1,3,5 5-C
F2 1-A,B
2-C
F3 1-A,B,C
3-A
5-A,B

Fig. 2. The contents of a vector fault dictionary versus a detailed
fault dictionary, which contains more data.

February 1995 Hewlett-Packard Journal 111

diagnostic algorithm and the more complex but realistic
bridging fault model with a simple diagnostic algorithm.
Using the stuck-at model and the simple algorithm together
typically provides very limited success (although this is de-
pendent on the manufacturing process). Clearly, using the
complex bridging fault model with the complex algorithm
would likely to be the most successful, but would give
little insight into whether the algorithm or the model is the
greatest contributor.

Stuck-at Fault Model. The stuck-at fault model continues to be
the most commonly used model for test generation, fault
simulation, and fault diagnosis. The model is simple and
simulation using it is fast. This is important for dictionary-
based diagnosis, especially if dynamic dictionary construction
is used. Because of the model’s ubiquitous nature, off-the-
shelf CAD tools can often be used for much of the diagnostic
process.

Bridging Fault Model. We use the biased voting model, which
is able to predict accurately the electrical behavior of a wide
variety of bridging defects in standard cell CMOS circuits by
considering the drive strength and logic thresholds of the
circuit elements in the neighborhood of the bridge. Our im-
plementation of the method runs approximately two to three
times slower per fault than stuck-at simulation, but is still
considerably faster than Spice, which it attempts to emulate.
Use of a realistic bridging fault model requires the extraction
of likely fault locations from the layout, which in turn re-
quires an inductive fault analysis tool.3 It is important that
potential bridges be extracted between adjacent layers, as
well as within layers.

Simple Diagnosis Method. The simple diagnosis method finds
the best match between observed failure data and the pre-
dicted failure data. A failing output predicted by simulating a
given fault for a given test vector matches the observed be-
havior when a failure that was observed on the tester ap-
pears at the same output for the same test vector. A fault is
removed from consideration if it predicts a failure point at a
vector (or vector/output pair for a detailed fault dictionary)
where no failure was observed. This is equivalent to a some-
what relaxed fault list intersection algorithm.8 In general, the
best matches are chosen, and the actual number of matches
depends on experience and the fault model being used. For
our experiments, faults were only selected if they were able
to predict all failures, which is the strictest selection rule.

Extended Diagnosis Method. The extended diagnosis method is
similar to the bit-partial intersection method,® which extends
the simple diagnosis method by not excluding faults whose
simulation predicts failures that were not observed on the
tester. Instead, the incorrect predictions for these faults are
considered along with their correct predictions (i.e., simu-
lated failures which were also observed on the tester). A
final likelihood for each fault is determined by a weighted
combination of the two measures, which is the extent to
which the fault’s predictions match the observed data. In
general, a correct prediction is given a substantially higher
weight than an incorrect prediction. For example, fault F3 in
Fig. 3 (which has three correct predictions and one incor-
rect) has a higher likelihood than F2 (which has two correct
predictions and zero incorrect).

112 February 1995 Hewlett-Packard Journal

It is possible to use an even more complex algorithm for
diagnosis, such as the effect-cause method.> However, de-
structive scan (flip-flop outputs toggle during scan) on our
example circuit precluded examining transition behavior,
and no implementation of the algorithm was available for
our experiments. Finally, it is easy to construct cases in
which such algorithms can be misled by realistic bridging
behavior, so the results are likely to be similar to those we
obtained.

Experimental Results

Our experimental vehicle is a small, full-scan ASIC (nine
thousand gates) implemented in a 1-um process. Two ex-
periments were conducted. In the first, parts with known
bridging defects were diagnosed using the two approaches
described above, and the results were compared with the
known cause. In the second experiment, simulated bridging
defects were diagnosed using the extended diagnosis
method the stuck-at fault model.

Known Bridging Defects. The sample chips for this experiment
came from two categories. Three chips had metal-to-metal
bridging faults inserted with a focused ion beam (FIB). Two
others were parts that failed at board test, and for which
subsequent failure analysis revealed bridging defects as the
root cause. The experiments were conducted so that the
person running the diagnostic tools did not know the defect
locations.

Both diagnosis methods described above are able to rank
faults based on their ability to predict observed failures. For
the example in Fig. 3, the simple diagnosis method would
rank the faults F2, F1, with F3 being excluded (F2 and F1
have no wrong predictions and F2 has more correct predic-
tions than F1), while the extended diagnosis method would
rank them F3, F2, F1 (order is based on the number of
correct predictions).

Since a failure analysis engineer usually does not have time
to investigate a large number of defect sites, we declare a
diagnosis to be misleading when at least nine simulated faults
are assigned by the particular diagnosis method to have a
higher likelihood than the actual fault of predicting observed
failures because their simulated (or predicted) behavior
closely matches observed behavior. We wanted to compare
the two diagnosis methods by examining the number of
misleading diagnoses.

Observed Failures* = A, B, C

Type of Fault Predicted Failures* Matches to Observed Failures
F1 A A Correct
0 Wrong
F2 AB AB Correct
0 Wrong
F3 AB,CD A,B,C Correct
D Wrong

*Failures Produced by Applying Failing Test Vector Set 1 to a Failing Chip on
the Tester (see Fig. 2)

*Failures Produced by Applying Failing Test Vector Set 1 to Fault Models
Fig. 3. The relationship between failing test vectors, observed fail-

ures, and the predicted failures produced by applying the failing
vectors to a particular fault model.

[Hewlett-Packard Company 1995

The results of using these diagnostic methods on bridging
faults are summarized in Table I. The entries under the fault
model columns are the number of cells that have been pre-
dicted to have potential defects after performing fine resolu-
tion using the model in question. The extended diagnosis
method which was used with the stuck-at fault model was
able to identify the correct cell as the most likely defect for
chips 2 and 3. For chip 4, the algorithm identified twelve
other locations as being likely fault locations before it found
the correct fault on the thirteenth try. For chip 1, on the
other hand, faults on a total of 15 cells (including the actual
defective one) predicted the observed failures correctly.
However the stuck-at model on chip 1 also predicted failures
on other outputs where no such failures were observed,
which shows a danger in relying on a subset of failing out-
puts to create a dictionary of likely fault sites (see Fig. 1).
Many of the faults on these 15 cells were equivalent,* so no
stuck-at diagnosis could distinguish between them. Both
chip 4 and chip 1 are thus misleading diagnoses because in
both cases greater than nine faults match the observed fail-
ures better than faults at the actual defect site.

Fault equivalence is much less common with realistic bridg-
ing faults than with stuck-at faults. Equivalent faults simplify
test generation but complicate diagnosis because the nodes
involved may be widely dispersed on the actual chip. The
relative occurrence of equivalent faults is shown in Table II
for all faults modeled in the circuit. The unique row shows
the number of faults that behaved differently from all other
faults in the test set. The vast majority of bridging faults be-
haved this way, but only 28% of stuck-at faults did, even
though the test set was designed to maximize this behavior.
The misleading row shows the number of faults with inher-
ently misleading behavior, in that they were identical to at
least nine other faults. Almost one sixth of the stuck-at faults
belonged to this category, compared with less than 2% of
bridging faults. This implies a substantial inherent misleading
diagnosis rate even for stuck-at defects when the stuck-at
model is used. The row labeled other represents faults that
had between two and nine fault equivalencies. In total, the
25345 bridging faults exhibited 21540 failing behaviors, for an
average of 1.18 faults per behavior, while the corresponding
stuck-at figure was 2.04 for 21010 actual faults.

Table |
Results for Known Bridging Defects
Fault Model
Chip Actual Defect Type* Bridging Stuck-at
1 FIB bridge Nonfeedback 1 15
2 FIB bridge Feedback 1 1
3 FIB bridge Feedback 1 1
4 Bridge Feedback 1 13
5 Bridge Feedback 2 5
6 FIB open — 1 1
7 Open e 2 2

FIB = Focused ion beam.
* See Fig. 4.

The bridging model was successful in each case using the
simple diagnosis method. An unobserved failure was never
predicted and all observed failures were predicted in each
case. For chip 5, two bridges matched the observed behavior.
The second possibility was also in the immediate vicinity of
the defect.

We also analyzed two chips with known open failures (the
final two chips in Table I). These failures can also be diag-
nosed to the correct location by both methods, showing that
the bridging method did not produce misleading results in
these cases. The actual rate of misleading diagnoses when
the bridging method is used with nonbridging defects has
not yet been determined primarily because of lack of data.

* Equivalent means that the same faulty behavior is caused by two different faults of the same
kind.

@) (b)
Fig. 4. (2) A nonfeedback fault. (b) A feedback fault.

[J Hewlett-Packard Company 1995

Table Il
Equivalent Fault Behavior

Modeled Bridging Stuck-at
Behavior Number Percentage* Number Percentage*
Unique 19404 76.6 5967 28.4
Misleading 412 1.6 3261 15.5
Other 1724 6.8 1086 5.1
Total 21540 85.0 10314 49.1

* As a percentage of actual faults (bridging faults = 25345 and stuck-at faults = 21010).

Simulated Bridging Defects. The data in the previous section
shows that misleading diagnoses of bridging defects can
occur with the stuck-at model, but are insufficient to allow a
rate to be calculated. Rate is a measure of the probability of
a misleading diagnosis. To get a better idea of the rate, the
following simulation experiment was performed.

We selected 200 bridging faults at random from the set ex-
tracted for the circuit. Of these, 78 were feedback faults and
122 were nonfeedback. These faults were then simulated
and a detailed fault dictionary obtained for each. The faults
could not be used as observed failure files directly because
they contained potential detection information.** Failure files
were generated by assuming that 0%, 10%, 50%, 90%, and
100% randomly selected potential detections would result in
errors. Our experience suggests that in practice this number
is around 10% for our simulation method.

Coarse diagnosis (vectors only) was then performed on
these files. Four stuck-at faults were considered for correctly
describing the fault (stuck at 0 or 1 on either of the bridged
nodes). One of these faults, which predicted the most ob-
served failures, was then selected as the best match. All
other faults that predicted at least as many failures as the
best match were noted. Of these, the faults with no more
than the number of failing predictions of the best match
were included as candidates. This is meant to represent a

** |n a simulation, a potential detection is a situation in which it is hard to prove that the fault
was detected (see “Potential Detection” on page 115).

113

February 1995 Hewlett-Packard Journal

Table Il

Results after Coarse Resolution

Category Potential
Detection (%) 14 5-9
Nonfeedback 0 46.7 15.6
10 45.1 13.1
S0 41.8 13.1
90 43.4 13.9
100 42.6 13.9
Feedback 0 41.0 11.5
10 35.9 14.1
50 35.4 12.5
90 333 14.1
100 35.9 12.8
Bridge (self) 10 85.9 6.4

Faults Remaining (%) Misleading
10-19 20-49 50+ Diagnoses (%)
5.7 11.5 20.5 37.7
6.6 10.7 24.6 41.8
8.2 8.2 28.7 45.1
4.9 11.5 26.2 42.6
5.7 11.5 26.2 43.4
10.3 11.5 25.6 47.4
15.4 5.1 29.5 50.0
14.6 8.3 29.2 52.1
14.1 7.7 30.8 52.6
14.1 6.4 30.8 51.3
5.1 0.0 2.6 7.7

kind of optimal selection process, which is able to stop
when it reaches the correct defect. In reality, the selection
process would likely include other faults to guarantee that
the correct fault is selected.

The coarse resolution results are summarized in Table III. As
an example of interpreting the entries in the table consider
the case in which 10% of predicted potential detections were
considered to result in hard detections. For nonfeedback
faults, 45% of the faults were resolved to fewer than five
sites after coarse resolution, and the rate of misleading diag-
noses was almost 42%. The average CPU time required for
coarse resolution on an HP 9000 Model 735 workstation was
24 seconds for each feedback fault and 22 seconds for each
nonfeedback fault. It seems evident that feedback faults re-
sult in a higher rate of misleading diagnoses than nonfeed-
back faults. This is not unexpected, since the behavior of
feedback faults is more complex and their connection to
stuck-at behavior is more limited.

As a reference point, one experiment (the last entry in Table
III) was performed using the bridging model to attempt to
diagnose the predicted bridging faults. In this case, the data
for the feedback faults (which are more difficult to diagnose
than nonfeedback faults) with a 10% rate of potential detec-
tions was diagnosed using a detailed bridging fault dictio-
nary. The misleading diagnostic rate after coarse resolution
was 7.7%. Most of these were cases where very few failures
were observed. The average CPU time for coarse resolution
was 38 seconds for this experiment.

Coarse resolution is only the first part of the diagnostic pro-
cess, but the number of faults remaining after it occurs deter-
mines the time required to process the remaining faults. Fine
resolution was performed on the faults remaining after
coarse resolution. The results are shown in Table IV, which
is identical in structure to Table III. The average CPU time
required for fine resolution was 146 seconds for each feed-
back defect and 147 seconds for each nonfeedback fault.

It is interesting to note that in some cases the rate of mis-
leading diagnoses actually increased after fine resolution.
This may be because of a particular situation that occurs for
some bridging faults. Sometimes vectors that fail closely
match one of the stuck-at faults at one node of the bridge,
while the actual failing signals propagate from another fault

114 February 1995 Hewlett-Packard Journal

site. A typical example is shown in Fig. 5, in which the
buffer is able to overdrive the NAND gate, so failing vectors
can occur whenever the two nodes have opposing values. In
this example, the buffer drives zero most of the time, and a
stuck-at one failure on the buffer output matches the failing
vectors extremely well. Since the buffer is always dominant,
failures never propagate from that site and fine resolution
would disregard that defect. In these cases, the coarse reso-
lution process was modified to pick at least one fault from
each site. This typically increased the number of faults re-
maining after coarse resolution by a factor of three or four.
Note that the number of such defects is nontrivial, since
global signals and buses tend to be driven with large buffers,
and these signals pass or cross many others.

The faults that are difficult to diagnose using the extended
algorithm and stuck-at fault model tend to share one of two
characteristics: large fanout and/or similar drive strengths. In
the first case, the so-called “Byzantine general”1¢ behavior
causes problems, where faults propagate along some fanout
branches but not others. With reconvergence, this can cause
failures where none would happen with a stuck-at fault on
the stem and the reverse. In the second case, when neither
gate in the bridge is dominant, the fault effects are dispersed
and less closely tied to either of the bridged nodes.

The final row of Table IV again refers to using the bridging
model to diagnose itself. As expected, misleading diagnoses
are virtually nonexistent at this point, although this result is
itself somewhat misleading, since the modeled defects are
the same as those being diagnosed. Fine resolution took an
average of 90 seconds per defect for this experiment. There
were typically many fewer faults to resolve than with the

Buffer Branch

Weaker Drive

Fig. 5. Dominant bridging fault.

[Hewlett-Packard Company 1995

Table IV

Results after Fine Resolution

Faults Remaining (%) Misleading
10-19 20-49 50+ Diagnoses (%)
8.2 13.1 20.5 41.8
5.7 10.7 24.6 41.0
115 12.3 18.9 42.6
15.6 13.9 213 50.8
13.1 123 23.0 48.4
115 15.4 21.8 48.7
14.1 24.4 15.4 53.8
14.1 17.9 19.2 51.3
11.5 15.4 17.9 44.9
14.1 14.1 25.6 47.4
1.3 0.0 0.0 1.3

Category Potential
Detection (%) 14 5-9
Nonfeedback 0 43.4 14.8
10 45.1 13.9
50 42.6 14.8
90 37.7 11.5
100 36.9 14.8
Feedback 0 32.1 19.2
10 29.5 16.7
50 29.5 19.2
90 359 19.2
100 29.4 16.7
Bridge (self) 10 92.3 6.4

stuck-at model, which more than compensated for longer
simulation time per fault.

Conclusion

We examined the occurrence of misleading diagnoses for an
extended diagnosis algorithm with a stuck-at fault model and
a simple algorithm with a realistic bridging fault model. A
diagnosis was declared to be misleading when at least nine
simulated faults were assigned a higher likelihood than the
actual fault of predicting observed failures because their pre-
dicted behavior closely matched observed behavior.

In the results from the actual chips and the simulation ex-
periments, it appears that the extended diagnosis algorithm,
when used with the stuck-at fault model, results in a rate of
about 40% of misleading diagnoses for realistic bridging
faults. This is much higher than the rate obtained when
using a simple diagnosis algorithm with a bridging fault
model. This suggests that fault model improvement may be
more beneficial than algorithm improvement in producing
diagnostic success. Similar rates are seen for known bridging
defects and for those simulated using the biased voting
model 4 although in the former case the sample size is too
small for any conclusions. This work is continuing as a joint

Potential Detection

A logic simulation will produce one of three values for a driven circuit output: 0, 1,
and X, where X is unknown (the simulator cannot predict the value). The situation
in which a circuit produces a known value, say 0, in a fault-free simulation but an
unknown value, X, in the simulation of a fault, is called a potential detection. It is
called potential detection because it will be detected if the unknown value is 1 on
an actual faulty chip, but it will not be detected if the unknown value is 0. The
following table summarizes these detectability conditions.

Good Faulty Value
Value 0 1 X
0 N D P
1 D N P
X N N N
D = Detected

N = Not detected
P = Potentially detected

[J Hewlett-Packard Company 1995

project between HP’s Design Technology Center and HP’s
Integrated Circuit Business Division’s quality group.

A second and somewhat counterintuitive result has also
emerged from this work. In at least some cases, additional
information can impede diagnosis. It was observed that vec-
tor dictionaries are sometimes better at diagnosing bridging
faults than detailed fault dictionaries, particularly when the
faults are of the one-gate-dominates variety. Additional work
is underway to better characterize this behavior.

Acknowledgments

The authors gratefully acknowledge assistance from Jeff
Schoper, Bob Shreeve, and others in the collection of chip
data for this work.

References

1. J.M. Acken, Deriving Accurate Fault Models, Technical Report
CSL-TR-88-365, Stanford University, Computer Systems Laboratory,
October 1988.

2. R.C. Aitken, “A Comparison of Defect Models for Fault Location
with Igqq Measurements,” Proceedings of the International Test
Conference, September 1992, pp. 778-787.

3. A. Jee and F]J. Ferguson, “Carafe: A Software Tool for Failure
Analysis,” Proceedings of the International Symposium for Testing
and Failure Analysis, November 1993, pp. 143-149.

4. P.C. Maxwell and R.C. Aitken “Biased Voting: A Method for Simu-
lating CMOS Bridging Faults in the Presence of Variable Gate Logic
Thresholds,” Proceedings of the International Test Conference,
October 1993, pp. 63-72.

5. J. Rajski and H. Cox, “A Method of Test Generation and Fault
Diagnosis in Very Large Combinational Circuits,” Proceedings of the
International Test Conference, September 1987, pp. 932-943.

6. M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital Systems
Testing and Testable Design, W.H. Freeman and Co., New York,
1990.

7. P.G. Ryan, K. Davis, and S. Rawat, “A Case Study of Two-Stage
Fault Location,” Proceedings of the International Reliability Physics
Symposium, March 1992, pp. 332-337.

8. P. Kunda, “Fault Location in Full-Scan Designs,” Proceedings of the
International Symposium for Testing and Failure Analysis, November
1993, pp. 121-127.

9. G. Ryan, W.K. Fuchs, and I. Pomeranz, “Fault Dictionary Com-
pression and Equivalence Class Computation for Sequential Circuits,”
Proceedings of the International Conference on Computer-Aided
Design, November 1993, pp. 508-511.

February 1995 Hewlett-Packard Journal 115

10. E.M. Rudnick, W.K. Fuchs, and J.H. Patel, “Diagnostic Fault
Simulation of Sequential Circuits,” Proceedings of the International
Test Conference, October 1992, pp. 178-186.

11. J.A. Waicukauski, E.B. Eichelberger, D.O. Forlenza, E. Lindbloom,
and T. McCarthy, “A Statistical Calculation of Fault Detection Proba-
bilities by Fast Fault Simulation,” Proceedings of the International
Test Conference, November 1985, pp. 779-784.

12. J.A. Waicukauski and E. Lindbloom, “Failure Diagnosis of Struc-
tured VLSL,” IEEE Design and Test, Vol. 6, no. 4, August 1989, pp.
49-60.

13. S. Chakravarty and M. Liu, “Algorithms for Current Monitor-Based
Diagnosis of Bridging and Leakage Faults,” DAC-92 Proceedings,
June 1992, pp. 353-356.

116 February 1995 Hewlett-Packard Journal

14. A. Pancholy, J. Rajski and L. McNaughton, “Empirical Failure
Analysis and Validation of Fault Models in CMOS VLSI,” Proceedings of
the International Test Conference, September 1990.

15. S. Millman, E.J. McCluskey and J. Acken, “Diagnosing CMOS
Bridging Faults with Stuck-At Fault Dictionaries,” Proceedings of the
International Test Conference, September 1990, pp. 860-870.

16. L. Lamport, R. Shostak, and M. Pease, The Byzantine Generals
Problem, Technical Report 54, Computer Science Laboratory, SRI
International, March 1980.

[Hewlett-Packard Company 1995

