Object-Oriented Perspective on
Software System Testing in a
Distributed Environment

A flexible object-oriented test system was developed to deal with the
testing challenges imposed by software systems that run in distributed

client/server environments.

by Mark C. Campbell, David K. Hinds, Ana V. Kapetanakis, David S. Levin, Stephen J. McFarland, David

J. Miller, and J. Scott Southworth

In recent years software technology has evolved from single-

machine applications to multimachine applications (the
realm of the client and server). Also, object-oriented pro-
gramming techniques have been gaining ground on proce-
dural programming languages and practices. Recently, test
engineers have focused on techniques for testing objects.
However, the design and implementation of the test tools
and code have remained largely procedural in nature.

This paper will describe the object testing framework, which
is a software testing framework designed to meet the testing
needs of new software technologies and take advantage of
object-oriented techniques to maximize flexibility and tool
reuse.

System Software Testing

The levels of software testing include unit, integration, and
system testing. Unit testing involves testing individual system
modules by themselves, integration testing involves testing
the individual modules working together, and system testing
involves testing the whole product in its actual or simulated
operating environment. This paper focuses on software
system testing.

A software system test is intended to determine whether the
software product is ready to ship by observing how the
product performs over time while attempting to simulate its
real use. System testing is composed of functional, perfor-
mance, and stress tests. It also covers operational, installa-
tion, and usability aspects of the product and may include
destructive and concurrence testing. The product may sup-
port many different hardware and software configurations
which all require testing. All of these aspects are combined
to assess the product’s overall reliability. Software system
testing is usually done when all of the individual software
product components are completed and assembled into the
final product.

In the past, system testing environments centered around
testing procedural, nondistributed software. These environ-

ments, which were also procedural and nondistributed, were

usually developed by the test writer on an ad hoc basis
along with the test code for the product. Recently, software
system testing has benefited from the use of highly auto-
mated test harnesses and environments that simplify test

execution, results gathering, and report generation (see

Fig. 1). Unfortunately, the test harnesses created in these
environments were not easily reusable, and when the next
project reached the test planning stage, the test harness had
to be reworked.

The advent of standardized test environments such as TET
(Test Environment Toolkit)* helped to reduce this costly re-
tooling by providing a standard API (application program
interface) and tool base that test developers can adopt and
use to write standardized tests. However, the difficulty is to
provide a standard test harness that is complete but flexible
enough to keep pace with changing software technology
and remain viable for the long term.

During the development and testing of the initial release of
HP ORB Plus, which is an object request broker based on
the Object Management Group’s CORBA specification (see
page 76), we realized that distributed object technology
posed testing problems that were not adequately solved by
any of the test harnesses currently available. We needed a
flexible test environment that could handle heterogeneous

* The Test Environment Toolkit (TET) specification began in September 1989 as a joint proposal
by the Open Software Foundation, UNIXZ International, and XlOpenD.

Tester

User Interface } Command Line or GUI
Configuration Management,
Created Test Harness Test Control,
by Test Report Generation, etc.
Developers

Test Scripts,
Test Cases, etc.

System Under Test (SUT)

Fig. 1. A typical automated test environment.

December 1995 Hewlett-Packard Journal 75

distributed systems communicating over multiple transports
using multithreaded clients and servers. However, we were
not willing to lose the investment we made in the test code
and tools developed for our earlier products.

Instead of abandoning the old test environment and replac-
ing it with an entirely new system, we decided to use the
object-oriented principles of encapsulation and polymor-
phism to evolve our current environment base to meet our
needs without throwing out the old code. The ability to
change or replace functional blocks of a system without af-
fecting the entire environment is one of the main benefits of
object-oriented design (see “Object-Oriented Programming”
on page 79). Object-oriented principles allowed us to reuse
existing tools.

Distributed System Testing

In a distributed object system, service providers are distrib-
uted across a network of systems and are called servers.
Clients, who issue requests for those services, are also dis-
tributed across a network. A single program can be both a
client (issues requests) and a server (services requests). Cli-
ents can issue requests to local and remote servers. During a
distributed object system test, clients are responsible for
reporting any failures or status resulting from the requests
they make.

The first task performed during the system testing of a dis-
tributed object software product is test setup. Clients and
servers must be deployed across the network to targeted
systems. Consideration must also be given to the fact that
servers may have multiple clients sending messages to them,
and the distribution of clients and servers may change dur-
ing a system test so that various hardware and software con-
figurations can be tested.

The Object Management Group’s
Distributed Object Model

The Object Management Group (OMG) creates standards for the interoperability
and portability of distributed object-oriented applications. The OMG only produces
specifications, not software. Each participating vendor provides an implementation
to meet the specification. The Common Object Request Broker Architecture
(CORBA,) specification defines a flexible framework upon which distributed object-
oriented applications can be built. This architecture represents the Object Request
Broker (ORB) technology that was adopted by the OMG. An ORB provides the
mechanisms by which distributed objects transparently make requests and receive
responses. The ORB enables object-oriented applications on different machines to
communicate and interoperate.

The OMG has defined an Object Management Architecture object model. In this
model, objects provide services, and clients issue requests for those services. The
ORB facilitates this model by delivering requests to objects and returning any
output values to the client. The services that the ORB provides are transparent to
the client.

To request a service, a client needs the object reference for the object that is to
provide the service. The ORB uses this object reference to identify and locate the
object. The ORB activates the object if it is not already executing and directs the
request to the object.

76 December 1995 Hewlett-Packard Journal

When test clients execute, they are instructed to run for a
specified amount of time. They report failure and status in-
formation back to a central location. Upon completion of the
system test, clients and servers are stopped, temporary files
are removed, and final summary reports are produced.

The Test System

To manage all the activities of distributed system testing, we
developed a test infrastructure that met our current needs
and could evolve with new technologies and new needs. We
followed a modular, object-oriented design approach to
accomplish this.

We first engaged in several brainstorming sessions to pro-
duce a list of requirements for a complete distributed testing
framework. This was an attempt to pinpoint all the attributes
and functionality that a “perfect” test infrastructure would
have, and it was done in the context of system testing dis-
tributed objects. The needs of product developers, test de-
velopers, and testers were considered, as well as the need to
report metrics to the project team. The main focus, however,
was on the two groups who would use the test framework
the most: test developers and testers. Often these are the
same people, but the distinction was made to clearly differ-
entiate the needs of each group.

Product developers normally want quick and simple tests to
verify that their code behaves correctly and at the same time
have their programs work as they would for an end user.
They don’t want to be distracted by the infrastructure. Exist-
ing test APIs tend to be intrusive, requiring developers to
have knowledge of the test environment in which their tests
will be run. Therefore, we wanted our new test framework
to minimize intrusiveness. This would allow developers to
focus on testing the proper behavior of their code and not
on the test infrastructure. Ideally, product developers should
be able to write their tests with minimum restrictions, and
the tests should plug and play in many different testing
situations.

Test developers, whose job it is to develop ways to test the
product, have many of the same needs as product develop-
ers but are more concerned with black-box testing and try-
ing to “break” the product rather than verifying correct be-
havior. To do this, test developers want to be able to plug
new tests into the test environment easily and quickly, and
they want process and environment control. This would
allow them to use the same tests in different scenarios to
find more product defects. Test developers are usually the
ones responsible for supporting the testing infrastructure.
Thus, more than any of the other groups, test developers
need a framework that is extensible, reusable, flexible, and
controlled, and hopefully has a long lifetime. If a testing
infrastructure becomes out of date, test developers will have
to repair or replace it.

Often test developers are the ones who perform system test-
ing, but many times this role is handed off to testers. Although
the needs of both groups clearly overlap, testers need a test-
ing infrastructure that is easy to use for the installation, con-
figuration, and execution of tests. In many of our past proj-

ects, testing was done by temporary personnel. This freed

test developers to write more tests and assist product devel-
opers in debugging. When the test infrastructure is easy to
use, the testing role can be handed off to testers earlier in
the testing process. Additionally, the ability to reconfigure
the test environment easily and quickly allows more scenar-
ios to be tested. This increases the likelihood of finding more
product defects, which leads to a better quality product.

Finally, test results are usually provided to the project team
in the form of metrics. Gathering metrics in a distributed
environment can be time-consuming. Data can be located on
multiple systems on the network. However, when dealing
with multiple processes running in parallel on different sys-
tems, results may not always occur in a consistent order.
This implies the need for a centralized repository for testing
results. This would make the generation of metrics much
easier and faster, while providing a central location for finding
problems and debugging.

Design Methodology

Taking into consideration the needs of the different groups
mentioned above, we decided that the following attributes
were required for our test infrastructure.

Extensibility. Ensure the evolution of a modular system that
can be dealt with on a component-by-component basis.
Reusability. Allow object and code reuse for both tests and
the test infrastructure.

Flexibility. Provide a plug-and-play environment that allows
for flexibility in test writing and configuration.

Simulation. Provide the ability to simulate customer environ-
ments.

Control. Provide centralized control of the test processes
and environment.

Nonintrusive. Hide as much of the testing infrastructure as
possible from the system under test.

Ease of use. Provide ease of use for installation, setup, con-
figuration, execution, results gathering , and test distribution.

With these attributes in mind, we set about deciding on the
basic set of classes that would be needed. We used a
method for object-oriented design called Object Modeling
Technique (OMT)! to develop a diagram showing class rela-
tionships (see “Object-Oriented Programming” on page 79).

We walked through several scenarios and expanded and
refined our set of classes. Once we had an initial design we
wrote CRC (class, responsibility, and collaboration)? cards
for each of the classes in our design. (CRC cards are also
described on page 79.) This design was reviewed by the
product development team and their feedback was incorpo-
rated.

The Object Testing Framework

The design process produced an object-oriented software
testing system that we named the object testing framework
(OTF). Although this design is intended to test distributed
object-based software, it can also be used to test distributed,
procedurally based client/server software. The OTF consists
of the classes shown in Fig. 2. The architecture of the OTF is
such that there is a single master test control system (OTF
management system in Fig. 2) that orchestrates running tests
on multiple systems under test. This master system can also
be a system under test.

In the following design discussion, the term object can mean
class or an instance of a class. It should be clear from the
context of the discussion which is meant.

OTF Management System

The OTF management system consists of the six major
classes: user interface, OTF controller, test suite configura-
tion, test controller, report generator, and database control-
ler. This system provides the user interface that the software
tester interacts with. Through this interface the tester speci-
fies test configurations such as which client and server pro-
grams will be running on which SUTs. The OTF manage-
ment system takes the specified configurations and makes
them available to each of the SUTSs, ensures that the SUTs
run the specified tests, logs test data and results, and gener-
ates test reports.

The main class in the OTF management system is the OTF
controller, which serves as the delegator object. It takes re-
quests from the user interface object and manages the activi-
ties of the test suite configuration, test controller, and report
generator objects. The test suite configuration object is actu-
ally created by the OTF controller. For a new configuration
the object will initialize from the configuration data provided
by the user interface. For a previously specified configura-
tion, the object will initialize from the database. After this
object’s configuration data has been set, its primary responsi-
bility is to respond to configuration queries from the SUTs.

The test controller has the overall responsibility for coordi-
nating the running of tests on the SUTSs. It provides the SUTs
with a pointer to the test suite configuration object, synchro-
nizes the starting of tests, and passes status data and re-
quests back to the OTF controller. It also has the capability
to log status data to the database via the database controller.

The report generator, upon a request from the OTF control-
ler, queries the database controller to assemble, filter, and
format test data into user-specified test reports. Raw test data
is put into the database by each SUT’s TestEnvironment object,
while test process status data is put into the database by the
test controller as mentioned above.

System under Test

Each system under test (SUT) contains fifteen classes. In
normal operation, a SUT retrieves configuration data from
the OTF management system, and then, based on that data,
retrieves the specified tests from the management system.
Since the SUT has the capability to build test executables
from source code, it can retrieve test source code and exe-
cutables from the OTF management system. Once the test
executables are in place and any specified test setup has
been completed, the SUT waits for a management system
request to start the tests. When this happens, the SUT is re-
sponsible for running the tests, logging status, test data, and
results, and cleaning up upon test completion.

The main object in the SUT is the host daemon, which is the
SUT’s delegator object. The host daemon takes requests from
and forwards requests to the OTF management system and
manages the activities of the setter upper, test executor,
cleaner upper, process controller, and TestEnvironment objects.

77

December 1995 Hewlett-Packard Journal

OTF Management System

User
Interface

OTF
Controller

Test Suite
Configuration

Test Report

Controller Generator

System under Test

Test Management Subsystem

Database
Controller

Process Management Subsystem

Setter
Upper

Cleaner
Upper

Test
Distributor

Process
Controller

TestEnvironment

TestCase

Factory

Ellitr TestCase

User Written Test
MyFactory

Test Case

@ = Multiple Associations
A =Subclasses or Inheritances

The overall responsibility of the setter upper, test executor,
and cleaner upper objects is to manage how the tests are
run. These three objects collaborate with the builder, test
distributor, checker, and factory TestCase objects to form the
test management subsystem shown in Fig. 2. The process
controller and TestEnvironment objects provide the infrastruc-
ture for connecting the tests to the framework. These two
objects collaborate with the TestCase objects to form the
process management subsystem.

Test Management Subsystem

This subsystem sets up and executes the tests and then
cleans up after the tests have completed. The setter upper is
the object that controls test setup. It is a low-level delegator
that manages the activities of the builder, test distributor,
checker, and factory TestCase objects. The test distributor is
responsible for retrieving test executables and sources from
the OTF management system. When it retrieves source code,
the builder is responsible for generating test executables
from the code. How the tests are retrieved depends on the
overall system environment and resources available. A dis-
tributed file system, like NFS, could be used, or the tests

78 December 1995 Hewlett-Packard Journal

Client
TestCase

MyClient
Test Case

Server
TestCase

MyServer
Test Case

Fig. 2. System architecture for the
object testing framework.

could be remote copied from the management system to the
SUT. An important design consideration was to have a single
repository for tests. This makes it easy to control changes to
tests and is not intrusive on the SUTs.

The checker provides the ability to customize test setup by
invoking a user-written program that can ensure that ele-
ments outside of the test environment are set up correctly.
For example, it could check that NFS and DCE are running,
that the display is set correctly, and so on.

The factory TestCase provides the setup procedures that arise
when testing a CORBA-based distributed object system. It
creates the CORBA objects that reside in the CORBA-based
server TestCases and stores references to these objects for use
by the client TestCases. The factory TestCase class inherits from
the TestCase base class and the test developer writes a class
that inherits from the factory TestCase class. This allows the
test developer to customize the factory TestCase functionality
for a specific test.

The test executor object starts the client TestCases through
the functionality inherited from the TestCase base class. It also

Object-Oriented Programming

Object-oriented programming is a set of techniques for creating objects and as-
sembling them into a system that provides a desired functionality. An object is a
software model composed of data and operations. An object’s operations are used
to manipulate its data. Objects may model things such as queues, stacks, win-
dows, or circuit components. When assembled into a system, the objects function
as delegators, devices, or models. Messages are passed between the objects to
produce the desired results.

The eventual goal of object-oriented programming is to reduce the cost of software
development by creating reusable and maintainable code. This is achieved by
using three features of object-oriented programming: encapsulation, polymor-
phism, and inheritance. Encapsulation consists of data abstraction and data hid-
ing. Data abstraction is a process of isolating attributes or qualities of something
into an object model. With data hiding an object may contain its own private data
and methods, which it uses to perform its operations. By using polymorphism, an
object's operation may respond to many different types of data (e.g., graphical and
textual). Finally, using inheritance, an object can inherit attributes from other ob-
jects. The object may then only need to add the attributes, methods, and data
structures that make it different from the object from which it inherited its basic
characteristics.

For the design of the object testing framework described in the accompanying
article, we used an object-oriented software design methodology called object
modeling technique (OMT). This methodology provides a collection of techniques
and notation for designing an object-oriented application.

One important aspect of object-oriented design, or any software design, is decid-
ing on who (i.e., module or object) is responsible for doing what. A technique
provided in OMT involves using an index card to represent object classes. These
cards are called CRC (class, responsibility, and collaboration) cards. The informa-
tion on one of these cards includes the name of the class being described, a
description of the problem the class is supposed to solve, and a list of other
classes that provide services needed by the class being defined.

reports back to the host daemon the success or failure of a
test start.

The cleaner upper cleans up after the tests have completed.
This may include removing temporary files, removing test
executables, and so on.

Process Management Subsystem

The two main objects in the process management subsystem
are the process controller and TestEnvironment objects. The
process controller has the overall responsibility to monitor
all test-related processes on the SUT. It can register or un-
register processes, kill processes, and report process status
back to the host daemon.

The TestEnvironment class provides the test developer with an
application programming interface to the OTF. It provides
methods for aborting tests, logging test data and results,
checking for exceptions, getting environment variables, and
so on. The test developer gets access to these methods
through the base TestCase class, which has an association with
the TestEnvironment class.

Creating a test involves writing a class that inherits from
either the client TestCase or server TestCase base classes. The
initialization and setup functionality for the test would be
included in the test’s constructor. The cleanup required
when the test is done is included in the destructor. Finally,
an implementation for the inherited run_body() method is
included, which is the test executable that runs the test. The

OTF API is made available through the pointer to the TestEn-
vironment class provided by the base TestCase class.

Implementation Approach

Once the design was complete, an initial investigation was
made to find an existing system that matched the characteris-
tics of the design. When no system was found, an analysis
was done to determine the cost of implementing the new
infrastructure.

It quickly became obvious that the transition to the new
infrastructure would have to be gradual since we did not
want to impact the HP ORB Plus product release cycle. The
flexibility provided by an object-oriented system enables
gradual migration and evolution through encapsulation,
inheritance, and polymorphism. Tests could be isolated from
the infrastructure so that new tests could be developed and
evolved without modification as the infrastructure evolved.
This flexibility fit nicely with the realization that the time to
replace the existing infrastructure exceeded an average prod-
uct life cycle.

Object-oriented encapsulation provided another advantage.
Once some basic changes were made to the existing test
infrastructure and tests had been converted to the new
object-oriented programming model, the existing test infra-
structure could be used to simulate some aspects of the new
infrastructure. This allowed our system testing efforts to
benefit immediately from the features of the new test
system.

The development of the current version of the object testing
framework has taken place in two steps, which have spanned
three releases of the HP ORB Plus product. At each step we
have continued to apply the same design principles. This
work is summarized in the following sections.

First Step. For the first step, the goal was to consolidate the
best practices of three existing test infrastructures into a
single infrastructure that simulated as much of the major
functionality of the OTF as possible. So as not to impact the
ongoing HP ORB Plus software releases, another goal was to
minimize changes to existing test code. This resulted in an
infrastructure that consisted of a layer of shell scripts on top
of two existing test harness tools. This significantly reduced
the effort needed to set up, administer, and update the net-
work of systems that were used to system test the HP ORB
Plus product, while the tests continued to use existing APIs.
It also confirmed that our design was indeed trying to solve
the right problems.

Second Step. For this step the goal was to deploy the test
developer’s API to the OTF. The result was the implementa-
tion of the C++ TestEnvironment and TestCase classes described
above.

Additional classes were designed to connect the TestEnviron-
ment and TestCase classes to the existing infrastructure, but
their existence is hidden from the test developer. This pro-
vides a stable API without limiting future enhancements to
the infrastructure. Once the new infrastructure was deployed,
we focused on porting existing tests to it.

This framework has resulted in minimal changes to existing
tests and maximum increase in functionality for the tests.
Most of the work simply involved taking existing code and

December 1995 Hewlett-Packard Journal 79

wrapping it in the appropriate class. All of our tests have
benefited from the features provided by the TestEnvironment
and TestCase classes and are insulated from changes to the
framework.

At this stage of its development the object testing framework
allowed the removal of intrusive test code required by the
old test APIs. For example, many tests included code that
allowed a test to be reexecuted for a specific time period.
That code was removed from the tests because the same
functionality is now provided by the framework.

In addition to supporting the design shown in Fig. 2, our
current implementation provides the following functionality:
Iteration. A test can be executed repetitively, either by speci-
fying a number of iterations or the amount of time.
Context-sensitive execution. The object testing framework
behaves differently depending on how it is invoked. In the
developer’s environment it is transparent and does not affect
test behavior. In the testing environment it is bound to the
test system. For example, in the developer environment, the
C++ functions cerr and cout go to the terminal, but in the
testing environment they go to a file and the test report jour-
nal respectively. This encourages developers to put all exist-
ing tests into the framework because the test continues to
work the way it did before it was ported.

Simple naming service. A naming service allows the user to
associate a symbolic name with a particular value such as
the path name of a data file. In a distributed system, it is
necessary for multiple processes to share values that are
obtained outside of the system—for example, object
references.

Automatic capture of standard output streams cout and cerr.
To simplify porting of existing tests, the cout and cerr streams
are mapped to a file and the journal file respectively.
Encapsulation of functions from the product under test. For
example, the parts of CORBA used by the tests are encapsu-
lated. As CORBA evolves and changes its C++ language
bindings, only a single copy of the bindings in the frame-
work has to change.

Inheritance and reuse. Inheritance allows the test case de-
veloper to describe similar tests as a family of test cases de-
rived from a common class (which in turn is derived from
the TestCase class). In this case, polymorphism allows test
code to be reused in multiple tests, while allowing changes
to specific operations and data when needed.

Example. Our experience with the current framework has
shown that the time to port existing applications tests to the
new API is minimal. Fig. 3 shows an example of how test
code would look before and after being ported to the new
test infrastructure. This example is an implementation of the
client for an OMG CORBA program, which simply prints
“hello, world.” In this case, the phrase will be printed by the
say_it method provided by the server code. The following
descriptions point out some of the differences between the
two source files. The numbers associated with the descrip-
tions correspond to the numbers in Fig. 3.

1. Fig. 3b shows portions of the test code with TestCase and
TestEnvironment instrumentation. These classes are not in the
code in Fig. 3a.

80 December 1995 Hewlett-Packard Journal

2. Fig. 3b includes the class declaration and method defini-
tions of a HelloworldTest class and a macro to register the defi-
nition with the TestEnvironment. The HelloWorldTest class is de-
rived from the TestCase base class. Fig. 3a source has no
HelloWorldTest class.

3. The check_ev_and_ptr macro in the Fig. 3a source is greatly
simplified in the Fig. 3b source, thanks to the TestEnvironment’s
print_exception and is_nil methods.

4. Fig. 3a has a main function, whereas in Fig. 3b, the main
function is replaced by the HelloWorldTest constructor, destruc-
tor, and run_body methods. This structure allows the OTF to
instantiate and run the test code as needed. The constructor
and destructor allow the test writer to separate out “execute
once” code if desired. The run_body method may be executed
more than once.

5. Fig. 3a uses a file to store the object reference string
created by the server. (Use of files is potentially difficult if
the client and server are on different machines.) Fig. 3b uses
the TestEnvironment’s naming service to get the object refer-
ence string.

6. In Fig. 3b argc and argv are not available as input parame-
ters and must be obtained from the associated TestEnvironment.

7. The int return parameter of the main function in Fig. 3a is
replaced by the TestEnvironment:Result of the run_body method
in Fig. 3b. The effect is the same, to return the success or
failure of the invocation.

Next Steps. The following is a list of items under consider-
ation for implementing the rest of the design and adding
more functionality to the TestEnvironment and TestCase classes.
User interface class. We are investigating the possibility of
encapsulating a graphical user interface that was designed
for one of the existing test infrastructures.

Test controller class. Here again we are looking at encapsu-
lating an existing test synchronization controller.

Memory leak detection. By adding this feature to the Test-
Environment and TestCase classes, all tests will get this function-
ality through inheritance.

Integration with run-time debugging. This will improve
tracing and fault isolation in a distributed, multithreaded
environment.

Heterogeneous networks. The current object testing frame-
work handles networks of HP-UX* systems only. We need to
expand the framework to handle other UNIXY systems as
well as PC operating systems.

Summary

The object testing framework is based on using object-
oriented technology to create a test infrastructure that is
based on a number of small, self-contained modules and
then developing these modules in a way that allows the test-
ing effort to proceed while the test infrastructure continues
to evolve. Each step of the evolution results in a usable test
infrastructure that keeps the test effort online and provides
critically needed support to product releases.

In addition to our overall commitment to complete this proj-
ect, and a desire to see it used in other organizations in HP

/I Standard C++ headers /I Standard C++ headers

#include <fstream.h> #include <fstream.h>
#include <string.h> #include <string.h>
. /I Header for CORBA HelloWorld object.
I Header for CORBA Helloworld object. #include <helloTypes.hh>
#include <helloTypes.hh>
Il List of error messages. /I Header for Test Case object.
extern char *msgs]; #include "testcase.hh”
Il Simple macro to check for exceptions and valid pointers. I List of error messages. @
#define check_ev_and_ptr(ev, ptr, errcode) A extern char *msgsf[];
Il First, check for exception. . . o
if (ev.exception()) { /I Simple macro to check for exceptions and valid pointers.
#define check_ev_and ptr(ev, ptr, errcode)
cerr << msgs[errcode] << ” Exception returned.” << endl; \ /I Check for exception and valid pointer. (@
retur errcode; \ @ if (te.print_exception(ev) || te.is_niY(ptr))

/I Next, check for valid pointer. return (TestEnvironment::Result) <———
(TestEnvironment::user_code + errcode);
if (CORBA::is_nil(ptr)) {

cerr << msgs[errcode] << “Pointer is null.” << endl; \ /1 Dectaration of HelloworldTest class.
return errcode: \) class HelloWorldTest : public TestCase
2
int public: O

main(int argc, char *argv[]) <—@ HelloWorldTest();

{ ~HelloWorldTest(); }@

. TestEnvironment::Result run_body();
CORBA::Environment ev; %
private:
CORBA::0ORB_ptr orb;
Helloworld_ptr hello;

/I Open a file which contains the object reference string for
I the Hello interface. Read the string.

ifstream f("hello_instance™); @ char *message; i @
if (1) { .

cerr << "Could not open \"hello_instance\” file.” << endi; DECLARE_TESTCASE_FACTORY(HelloWorldTest);

return 1; I Definition of HelloWorldTest constructor.

} I The following pieces of the test are considered set up.

} HelloWorldTest::HelloWorldTest()

char soref[1024]; CORBA::Environment ev;

iff>(>|fS)0{l’ o Il Get the object reference string for

/I the Hello interface from the test environment.

<" ingifi j ”
cerr Could not read the stringified object reference string soref = te.get_object_string(“hello_instance”);

<< “from the \"hello_instance\” file.”
<<endl [/ Initialize the CORBA environment, get pointer to ORB
return 2; orb = CORBA::ORB_init(te.argc, te.argv, CORBA::HPORBId, ev);

Il nitialize the CORBA environement, get pointer to the ORB. check_ev and_ptr(ev, orb, 3);

/I Convert object reference string to object reference.
CORBA::Object_var hello_objref

= orb->string_to_object(soref.c_str(), ev);
check_ev_and_ptr(ev, hello_objref, 4);

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv,
CORBA::HPORBId, ev);
check_ev_and_ptr(ev, orb, 3);

Il Convert object reference string to object reference. /I Narrow the COBRA:: Object object reference to a HelloWorld one.

CORBA::Object_var hello_objref hello = HelloWorld:: _narrow(hello_objref, ev);
= orb—>string_to_object(soref, ev); check_ev and ptr(ev, hello, 5);
check_ev_and_ptr(ev, hello_objref, 4); COBRA:: release(hello_objref);

L] L]

L] L]

o L]
CORBA::string_free(message); CORBA::string_free(message);
CORBA::release(hello); CORBA::release(hello);
CORBA::release(hello_objref); CORBA::release(orh);
CORBA::release(orb); }

}
(@) (b)

Fig. 3. (a) Test code before being ported to the object testing framework. (b) The same test after being ported.

involved in distributed object technology, we will continue 2. K. Beck and W. Cunningham, “A Laboratory for Teaching Object-
to parﬂcipate in standards o[‘ganizations such as OMG and Oriented Thil’lkil’lg,” SIGPLAN Notices, Vol. 24, no. 10, October 1989.
X/Open to follow the work that is being done in the area of p.yx 9+ and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX
testing. To date, we have evaluated and provided feedback 93 branded products.
to the X/Open Consortium and have a representative moni- UNIX is a registered trademark in the United States and other countries, licensed exclusively
toring the activity at OMG. through X/Open Company Limited.

XIOpen is a registered trademark and the X device is a trademark of X/Open Company Lim-
References ited in the UK and other countries.

1. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson, Open Software Foundation is a trademark of the Open Software Foundation in the U.S. and
Object-Oriented Modeling and Design, Prentice Hall, 1991. other countries.

December 1995 Hewlett-Packard Journal 81

