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Connectivity of the HP DeskJet 1200C

Printer

The connectivity components include the language firmware, a language
interface to the mechanical firmware, software printer drivers, and tools
for various environments and for driver developers. A screen calibrator
tool enlists the user’s help in making the printed output match the screen.

by Anthony D. Parkhurst, Ramchandran Padmanabhan, Steven D. Mueller, and Kirt A. Winter

“Connectivity” is the term used to refer collectively to the
software and firmware components of the HP DeskJet
1200C printer that, along with the printer itself, bring to the
user a complete color printer solution. These components
are the language firmware, a language interface to the me-
chanical firmware, software printer drivers and other tools
for the Microsoft  Windows and Macintosh environments,
and software tools for MS-DOS  driver developers.

The language, PCL 5C, is a colorized and (continually) 
enhanced version of the highly efficient printer command
language developed internally by HP to provide consistent
feature support across its printer product lines, from the
DeskJet to the PaintJet to the LaserJet lines. The language
system interface to the mechanical firmware is a well-defined
interface that allows outside language firmware developers,
such as Adobe Systems, to develop other language processes
besides PCL, such as PostScript,  for the printer. HP
printer drivers are written for the Windows and Macintosh
environments, and include highly advanced color manage-
ment tools that allow the user to achieve the best color qual-
ity available in the DeskJet 1200C. These color management
tools are also available to independent software vendors
developing DOS drivers for the printer. Topics discussed in
this article are:

• The PCL 5C language firmware
• Raster operations, a PCL 5C language feature that provides

advanced drawing functionality for the printer driver
• The language interface to the mechanical firmware, hereafter

called the language interface
• A screen calibration tool for color management.

PCL 5C Language Firmware

The HP DeskJet 1200C printer unifies HP LaserJet printer
intelligence with high-quality color printing by combining a
new generation of inkjet technology with a color enhanced
version of the LaserJet language known as PCL 5C. PCL 5C
gives applications access to state-of-the-art font scaling
technologies (Intellifont and TrueType ), full-featured
vector graphics with the HP-GL 2 language, and 24-bit color
imaging.

The programming, or firmware, in the DeskJet 1200C con-
tains a PCL 5C page formatter subsystem and a subsystem
to control the hardware and electronics. The PCL 5C page
formatter converts the high-level data stream from the

computer into a simple data stream for the print engine.
This interpreter consists of two processes: the parser and
the image processor.

Parser

The parser recognizes commands in the data stream and
performs the requested functions. The output of the parser
is a display list that is sent to the image processor. PCL 5C
is a page description language: the data stream describes
what the page should look like and prints the page when it is
complete. Page description consists of objects combined
with colors and patterns. An obvious benefit of a page de-
scription language is that the objects do not have to be
created in a position dependent order (e.g., top to bottom),
so the host need not merge or reorder objects before send-
ing them. The kinds of objects used in PCL 5C are text, rules
(rectangles), HP-GL 2 graphics (vectors and polygons), and
images (see Fig. 1).

After specifying character position on the page, the typeface
desired, and the point size (72 points/inch), the application
sends character codes to create text. The parser generates a
bitmap of the requested character from a scalable typeface
and stores the bitmap into the display list with the appropri-
ate positioning information. If this identical character is re-
quested later in the job (which is common for English text),
the bitmap is reused. PCL 5C can scale characters from �
point to 999� points with astonishing quality.

Rules, which are simply rectangles, are stored on the display
list as a starting coordinate pair along with a width and a
height.

Fig. 1. Basic object types: text, rules, polygons, vectors, and raster.
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HP-GL 2, the vector graphics language for pen and large-
format plotters, is a subparser within PCL 5C. HP-GL 2 has
features that provide high-level graphics, including polygons.
All HP-GL 2 objects are scaled, clipped, and decomposed
into simple vectors and trapezoids to be stored on the dis-
play list. An additional feature of HP-GL 2 within PCL 5C is
the ability to use outlines from the font scaling technology
directly as polygons. This gives the application the ability to
create special effects with text.

All of these objects are basically colorless—on a mono-
chrome printer such as a LaserJet, they will print as black.
The parser treats them as black objects. Color is handled
independently and is not applied to these objects until they
get to the image processor. To work with color, the applica-
tion must first configure a color palette. For compatibility
with monochrome printers, the default palette is defined as
having two colors: black and white. Palette configuration is
performed in three steps. First, the size and color space of
the palette are defined. Next, each entry of the palette is
assigned a color in that color space (up to 24 bits of color
information per entry). Finally, color can be adjusted for
gamma correction and rendering algorithm. Color can be
used as foreground color for objects such as text and vec-
tors, in color patterns, and in raster images. When such a
color is selected, the parser stores the color on the display
list, and the image processor will apply this color to each of
the objects on the display list until another color is selected.
Another method of using color is to define a color pattern to
apply to the objects. A color pattern differs from foreground
color in that several colors can be specified within the pat-
tern. The parser stores this pattern on the display list for the
image processor to apply to objects. The third and final way
to use color is raster images.

Raster processing in PCL 5C is very flexible, but most ap-
plications send raster data in one of four ways. Images can
be sent as single-plane bitmaps (monochrome), which are
LaserJet-compatible. Color can be applied to these bitmaps
in the same way as other black objects. Another form of
raster is 3-plane simple color. This mode is for applications
that do most of the work themselves and prefer to simply
send a color bitmap. Each pixel can take on eight values to
represent the colors that the print engine can print (black,
red, green, blue, cyan, magenta, yellow, and white). For
higher-level applications, data is represented as 8 bits per
pixel, indexed. Each pixel can have a value from 0 to 255,
and that value is used to index into a palette where each
entry is a color defined in a 24-bit color space. Finally, for
the highest-quality images from color scanners, data can be
sent directly as 24 bits per pixel. Palette entries are not used
for this mode. Standard techniques (dithering and error dif-
fusion) are used to reduce the continuous-tone image to
3-plane simple color for the print engine. The resulting 
image is stored in the display list.

The Image Processor

The image processor takes objects from the display list,
applies colors or patterns and puts them in swaths. On this
printer, swaths consist of three bitmaps, one each for cyan,
magenta, and yellow. Swaths are 2464 dots wide by 128 dots
high and are used by the print engine to drive the inkjet
printheads. The width of the swath is determined by the
printable area of the largest supported media size, and the

Fig. 2. Precomputed tiles are used to create a vector.

height is established by performance and efficiency issues.
Although text and raster are fully formed bitmaps at this
point, rules, HP-GL 2 vectors, and trapezoids are simply
coordinate pairs. The image processor must create bitmaps
for these objects. Rules are simple, since they are rectangles
that lie horizontally or vertically, but vectors and trapezoids
are not so well-behaved. There are well-established vector-
to-raster conversion algorithms, but the DeskJet 1200C uses
a high-performance vector-to-raster conversion process de-
veloped for HP large-format electrostatic plotters.1 This
method uses precomputed bitmap tiles stored in ROM to
build vectors (see Fig. 2). Tiles are bitmaps that are aligned
to word boundaries and can be pasted as needed in the
swath. The image processor selects the tiles based on slope,
width and position of the vector relative to word (16-bit)
boundaries.

At this point, all the objects (text, rules, tiles, images) look
like bitmaps. To complete this architecture, colors and pat-
terns on the display list are also tile bitmaps. Similar to
vector-to-raster tiles, these tiles can be pasted anywhere in
the swath along word boundaries. When a foreground color
is selected, the parser gets the color value from the palette,
then applies the current dither matrix to create a 16-by-16-
bit color tile (the size of the dither matrix is 16 by 16 bits)
which is stored on the display list as a three-plane object:
one plane each for cyan, magenta, and yellow. When the
image processor needs to apply a color tile to an object, the
color tile is logically replicated to cover the page, then com-
bined or masked with the object, and the result is put in the
swath (Fig. 3). A monochrome pattern in effect at this time
will also be combined with the object. A color pattern dif-
fers from a monochrome pattern in that the color pattern
already has color applied to it. The logic used in combining
color tiles, pattern tiles, object bitmaps, and the destination
bitmap (swath) is selected by the application and explained
in “Raster Operations” below. When all the objects for each
swath are processed, the swath is printed.

An alternative to the display list would be a frame buffer,
which is a full-page bitmap used to create the final output.
Although this approach has its advantages (especially with
very complex graphics), it consumes far more memory than
most jobs require. The display list’s efficient use of memory
allows the printer firmware to work farther ahead of the
print engine, providing smooth and rapid printing.
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Fig. 3. The cyan, magenta, and yellow color components are 
combined with the pattern and bitmap.

Is all this functionality worth the extra product cost to 
provide it? Yes. With a high-level language like PCL 5C, the
printer can do much of the work that the host computer
would have to do for a bare raster printer. This allows the
host computer to service the user instead of the printer. Be-
cause the DeskJet 1200C is LaserJet-compatible, LaserJet
applications continue to work for the DeskJet 1200C, and
driver writers simply have to add color functionality to their
LaserJet drivers instead of having to create yet another
printer driver from scratch.

Raster Operations

The world of graphical output devices is divided into two
distinct categories: raster devices and vector devices. Most
color and laser printers are raster devices, although graphic
applications communicate with them through high-level page
description languages. This provides a level of abstraction
away from hardware, allowing the applications to specify
attributes and lay down geometrical shapes in a device inde-
pendent fashion. Although the device uses pixels for its final
graphic representation, applications do not need to talk to the
interface in terms of pixels. For instance, an application can
take advantage of the fact that the printer can draw circles
by just sending down a radius and the coordinate position of
the center instead of every point on the circumference. The
application can also specify a fill pattern for the object and
lay it along with or on top of similar objects, blending their
corresponding textures in several different ways.

Microsoft’s Graphical Device Interface (GDI) is a suite of
interface specifications that bridges the gap between vari-
ous Windows-based GUI (graphical user interface) applica-
tions and a wide range of graphical output devices. GDI is a
high-level interface to a graphical output device. The HP
DeskJet 1200C driver for Microsoft Windows applications
can directly map several GDI primitives and drawing modes
to PCL 5C and HP-GL 2 high-level object descriptions. A
commonly used parameter in many GDI primitives is called
a logical operation or a raster operation (ROP).

ROPs are drawing modes that define how the bitwise inter-
action between a high-level source object, a color texture,
and the current destination produces a new destination.

Examples of source objects are vectors, polygons, text, and
raster images. Texture is a color or monochrome mask that
is applied to the source in a manner specified by the ROP.
Some applications have objects whose color is based not
only on the currently selected foreground color, but also on
the original contents of the destination.

Theory of ROPs

ROPs directly affect the appearance of objects drawn on the
display device by making use of both the selected foreground
color and the current contents of the destination. For in-
stance, an object can be placed on top of another object so
that it either completely overlaps its destination area or its
colors merge with those of the underlying object. The draw-
ing mode specified by the ROP makes it possible to choose
one of the several alternatives for rendering the object by
defining a bitwise Boolean operation between the pixels of
the source and the pixels of the destination.

Consider a monochrome device in which an object can be
drawn only with a black print cartridge on a destination
whose pixels are either black or white. There are four ways
of combining a black or white source pixel with a black or
white destination pixel.

Source 1 1 0 0
Destination 1 0 1 0

where 0 is black and 1 is white.

A bitwise Boolean operation for each of the above four cases
can yield either a 0 or a 1 in each of the four bit positions.
This results in 16 two-operand ROPs. These are the mono-
chrome drawing modes. A complete list of monochrome
drawing modes is shown in Table I.

Table I
Monochrome Drawing Modes

Source (S)
Destination (D)

1 1 0 0
1  0 1 0

Monochrome
Drawing Mode

Result         0 0 0 0 0 0 BLACK
1 0 0 0 1 ~(S | D) NOT_MERGE_PEN
2 0 0 1 0 ~S & D MASK_NOT_PEN
3 0 0 1 1 ~S NOT_COPY_PEN
4 0 1 0 0 S & ~D MASK_PEN_NOT
5 0 1 0 1 ~D NOT
6 0 1 1 0 S ^ D XOR_PEN
7 0 1 1 1 ~(S & D) NOT_MASK_PEN
8 1 0 0 0 S & D MASK_PEN
9 1 0 0 1 ~(S ^ D) NOT_XOR_PEN

10 1 0 1 0 D NOP
11 1 0 1 1 ~S | D MERGE_NOT_PEN
12 1 1 0 0 S COPY_PEN
13 1 1 0 1 S | ~D MERGE_PEN_NOT
14 1 1 1 0 S | D MERGE_PEN
15 1 1 1 1 1 WHITE

The symbols ~, ^, &, and | represent the bitwise logical operations NOT, exclusive-OR (XOR),
AND, and OR, respectively.

Color Drawing Modes

When color is introduced into the device, both the source
and the destination have three planes of data representing
eight primary colors: the additive colors red, green, and
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blue, the subtractive colors cyan, magenta, and yellow, and
black and white. Here the monochrome ROPs are performed
separately for each of the three planes to arrive at the 
consolidated resultant destination.

At any level of drawing, solid geometrical objects are drawn
as outlines and filled with a color pattern using a brush. It is
no different in computer graphic art packages. A color pat-
tern generated by a brush is called a texture. Textures are
normally masked through solid objects and placed in their
final destinations. The drawing modes must support an addi-
tional parameter because there is more than one way to make
use of a texture brush. The color drawing modes consist of a
set of three-operand ROPs that combine the pixels of source,
texture, and destination to produce new destination pixels.
There are eight ways of grouping a Boolean source, texture,
and destination pixel on a single plane:

Texture 1 1 1 1 0 0 0 0
Source 1 1 0 0 1 1 0 0
Destination 1 0 1 0 1 0 0 0

Extrapolating our derivation of monochrome drawing modes
to the color case results in 256 possible ways of combining
source, texture, and destination to produce a new destina-
tion. ROPs on color data are performed on a plane-by-plane
basis. Some of the most commonly used ROPs are shown in
the following table.

Table II
Color Drawing Modes in RGB Space

Texture (T)
Source (S)
Destination (D)

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

Color
Drawing
Mode

Result         0 0 0 0 0 0 0 0 0 0 DARKNESS
51 0 0 1 1 0 0 1 1 ~S NOT_SOURCE_COPY
85 0 1 0 1 0 1 0 1 ~D DEST_INVERT
90 0 1 0 1 1 0 1 0 T ^ D TEXTURE_INVERT

102 0 1 1 0 0 1 1 0 S ^ D SOURCE_INVERT
136 1 0 0 0 1 0 0 0 S & D SOURCE_AND
168 1 0 1 0 1 0 0 0 (T|S)&D
192 1 1 0 0 0 0 0 0 T & S MERGE_COPY
204 1 1 0 0 1 1 0 0 S SOURCE_COPY
234 1 1 1 0 1 0 1 0 (T&S)|D
240 1 1 1 1 0 0 0 0 T TEXTURE_COPY
252 1 1 1 1 1 1 0 0 T | S
255 1 1 1 1 1 1 1 1 1 BRIGHTNESS

A complete list of the 256 color drawing modes can be found
in the programmer’s reference manual of the Microsoft Win-
dows software development kit and also in the HP DeskJet
1200C developer’s guide.

Tables I and II show ROPs defined in RGB color space,
whereas the DeskJet 1200C printer operates in a CMY color
space (using cyan, magenta, and yellow print cartridges).
The image processing firmware in the printer renders ob-
jects in CMY space and generates C, M, and Y planes of des-
tination bitmaps. Users, however, being more used to the
screen-oriented RGB model, send down RGB data that de-
fines ROPs in RGB color space. The ROPs, therefore, have
to be translated into CMY space for the image processor.
Since RGB and CMY data complement each other, they can

be converted easily from one to another. The ROP is trans-
posed by toggling and swapping the bits within the byte so
as to preserve the interpretation of the corresponding bit-
wise logical operation. ROPs defined in Table II are in RGB
color space. Table III provides the CMY translation.

Table III
Color Drawing Modes in CMY Space

Texture (T)
Pen Source (S)
Destination (D)

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

Color
Drawing Mode

Result     255 1 1 1 1 1 1 1 1 1 DARKNESS
51 0 0 1 1 0 0 1 1 ~S
85 0 1 0 1 0 1 0 1 ~D

165 1 0 1 0 0 1 0 1 ~(T ^ D)
153 1 0 0 1 1 0 0 1 ~(S ^ D)
238 1 1 1 0 1 1 1 0 S | D
234 1 1 1 0 1 0 1 0 (T&S)|D
252 1 1 1 1 1 1 0 0 T | S
204 1 1 0 0 1 1 0 0 S
168 1 0 1 0 1 0 0 0 (T|S)&D
240 1 1 1 1 0 0 0 0 T
192 1 1 0 0 0 0 0 0 T & S

0 0 0 0 0 0 0 0 0 0 BRIGHTNESS

ROPs and the PCL Print Model

The original PCL 5 print model specifies how to fill source
image objects with any of the printer’s predefined, shaded,
hatched, or user-downloaded patterns. In addition to source,
pattern, and destination, source and pattern transparency
modes must be considered when masking the source image
through the pattern tile onto the destination. Source trans-
parency mode specifies whether the white pixels of the
source image are transparent or opaque. Pattern transpar-
ency provides a similar definition for the white pixels of the
pattern. Depending on the transparency modes, the destina-
tion either shows through the transparent pixels or gets
blocked by the corresponding white pixels. PCL 5C also has
a foreground color definition that gets applied to a mono-
chrome pattern to generate what is known as a texture. A
texture is either a color pattern or a colorized monochrome
pattern (a monochrome pattern with foreground color 
applied to it).

PCL 5C implements a new print model, which performs
transparency mode operations before it does ROPs.

ROP Formulas

We shall now proceed to derive the formulas used by the
image processor to render objects into three-plane CMY
bitmaps.

The main entities used are defined as follows:

Operands

Source: Character cell, rules, color and mono-
chrome raster images, HP-GL 2 vectors 
and polygons

Texture: Either color pattern or (foreground color 
& pattern mask)

Destination: Bitmaps for the C, M, and Y planes.
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Operators

Source transparency and pattern transparency 
definitions, which generate a transparency mask

Color drawing modes (i.e., ROPs), which operate on 
the above three operands.

Notation

~Source denotes the white pixels of the source.
~Pattern denotes the white pixels of the pattern.

In a color source image, ~Source would be the white 
extract from the three planes of consolidated source 
data.

The generic formula used by the image processing firmware
is based on the following premises:

• The destination shows through the white areas of the
source if source transparency is on.

• The destination shows through the white areas of the pattern
in the source area if pattern transparency is on.

• For all nonwhite pixels, the ROP result of the texture,
source, and destination is the new destination.

Destination = (Destination & Transparency_Mask) | 
(ROP Result & ~(Transparency_Mask)),

where Transparency_Mask has to be defined for the four
basic interactions of source and pattern transparencies with
ROPs.

For the sake of simplicity, the default ROP has been chosen
in Figs. 4, 5, 6, and 7. It is defined as (Texture OR Source) and
converted to (Texture AND Source) in CMY space. These
illustrations follow the CMY nomenclature.

Source Opaque and Pattern Opaque (Fig. 4). At present, this is
the most commonly used model because most of the Win-
dows GDI applications do not use the PCL transparency
modes. Source and pattern transparencies are set to opaque
and the transparency functionality is achieved using ROPs.

Fig. 4. The source opaque and pattern opaque transparency mode
for the default raster operation.
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Fig. 5. The source opaque and pattern transparent transparency
mode for the default raster operation.
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Transparency_Mask = 0

Destination = ROP(Texture, Source, Destination)

Source Opaque and Pattern Transparent (Fig. 5). Since the pattern
is transparent, the destination shows through the white
areas of the pattern where the corresponding source pixels
are nonwhite. However, the white area of the source is writ-
ten onto the destination because the source is opaque. The
result of the ROP is applied to the source pixel area of the
destination, allowing the destination to show through the
transparent source pixel area of the pattern.

Transparency_Mask = (Source & ~Pattern)

Destination = (Destination & (Source & ~Pattern)) | 
(ROP(Texture, Source, Destination) & 
~(Source & ~Pattern))

Source Transparent and Pattern Opaque (Fig. 6). The destination
shows through the white areas of the source mask. The
source pixel area of the destination is cleared and the result
of the ROP is laid down.

Transparency_Mask = ~Source

Destination = (Destination & ~Source) | (ROP(Texture, 
Source, Destination) & Source)

Source Transparent and Pattern Transparent (Fig. 7). This is the
default case in the PCL 5C print model, and therefore the
default case in the printer. The destination shows through
the transparent area of the source. The destination also
shows through the transparent area of the pattern tiled
across the source. The result of the ROP is applied to the
intersection of the source and the pattern. This ensures that
the transparent areas of the source and pattern do not affect
the destination.

Transparency_Mask = ~(Source & Pattern)

Destination = (Destination & ~(Source & Pattern)) | 
(ROP(Texture, Source, Destination) & 
(Source & Pattern))
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Fig. 6. The source transparent and pattern opaque transparency
mode for the default raster operation.
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Applications of ROPs

One typical application of ROPs is to clip objects to arbitrary
clip paths. Consider an example of drawing an arbitrarily
shaped object with a radial gradient texture. Fig. 8 shows
the various steps taken to achieve this.

First the application sends down several concentric rings,
each with a different shade of color. These are applied to the
destination using ROP 90 (Destination = Destination XOR
Texture), resulting in a circular gradient texture as shown in
Fig. 8a.

The second step places a solid black arbitrarily shaped object
(Fig. 8b) on top of the gradient using ROP 204 (Destination
= Source). This results in Fig. 8c.

Fig. 7. The source transparent and pattern transparent transparency
mode for the default raster operation.
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��

(a) (b)

(c) (d)

Fig. 8. Using raster operations to draw an arbitrarily shaped object
with a radial gradient texture.

The final step sends the complete set of concentric rings all
over again using ROP 90. This serves to erase the gradient
pixels external to the object, resulting in the required radial
gradient shading clipped to the arbitrary shape as in Fig. 8d.

Fig. 9 shows the result of a similar operation involving 
gradient-shaded text objects.

Pixel Placement Precision

Color space and address space are two fundamental differ-
ences between display devices and hard-copy devices. RGB-
to-CMY conversion between screen-oriented applications and
color printers has already been mentioned earlier in this ar-
ticle. Another area of incompatibility is the location of a pixel
in the coordinate system. The printer places pixels at the
intersections of the squares of a theoretical, device depen-
dent grid covering the printable area of the page, whereas
CRTs place pixels at the centers of the squares. These two
pixel placement methods are called the grid-intersection

method and the grid-centered method. They are shown in
Figs. 10a and 10b, respectively.

A problem arises in the grid-intersection model when two
adjacent polygons are defined and the ROP chosen performs
an exclusive-OR operation on the polygons and the destina-
tion. The pixels along the border may be rendered twice, re-
sulting in stray marks of a different color along the polygon
edges. This looks very bad on the printed output because
applications normally define complex graphical images using
several little polygons of different shades of color.

The PCL 5C implementation in the DeskJet 1200C printer
provides a choice of pixel placement methods. The default
grid-intersection model places pixels at the intersections of
the device dependent grid. A new grid-centered model simu-
lates placing the pixel at the center of the square in the grid
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Fig. 9. The result of an opera-
tion similar to Fig. 8 involving 
gradient-textured text.

by not rendering the last row and last column of every pixel
in a polygon defined under that model. For example, the grid-
centered model of a rectangle from (1,1) to (3,4) is rendered
as shown in Fig. 11.

The DeskJet 1200C printer also makes use of a high-precision
polygon decomposition algorithm to break up complex user-
defined polygons into simpler trapezoids and rectangles for
the image processor to render using ROPs. The need for a
high-precision polygon decomposition is mandated by the
same set of problems that required an alternative pixel
placement model. The polygon decomposition algorithm
ensures that every polygon pixel is defined once and only
once by maintaining integral and fractional pixel coordinate
information to the desired level of precision.

Fig. 12 shows four adjacent rectangular patterns rendered
using the ROP (Destination XOR Texture) under both of the
pixel placement models. The overlapping pixels create extra

Fig. 10. Pixel placement methods. (a) Grid-intersection. 
(b) Grid-centered.

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

Grid Intersection(a)

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

Grid Centered(b)

black lines along the adjacent borders of the rectangles in
the grid-intersection model. The problem is solved in the
grid-centered model.

Predictable Rendering

When using ROPs to clip to an arbitrary path, it is not only
necessary to be precise in physical pixel placement, but it is
also necessary to render the objects in a predictable manner.
In Fig. 13, a raster image has been rendered using a technique
called error diffusion. Error diffusion takes an input raster
image (each pixel can be defined as a 24-bit RGB color) and
produces the output raster data in terms of dots on the phys-
ical printer destination. The output raster data is generated
by looking at each pixel color and then propagating to the
surrounding pixels the difference between the original color
and the rendered physical color. In some implementations of
error diffusion, a random factor is added to avoid any repeat-
able patterns in the output raster image. In these implementa-
tions, the same input raster image can produce a different
output raster image every time it is rendered.

In Fig. 13, the raster image is being clipped into an oval
shape in the same manner that the gradient shade was
clipped in Fig. 8. The raster image is rendered and placed on
the destination with ROP 90, then a black oval is placed on
top using ROP 204, and finally, the image is rendered again
onto the destination using ROP 90 (the outline of the oval is
sent down separately from this clipping process). Fig. 13a
shows what happens using error diffusion with a random
factor. Rendering the raster image does not necessarily pro-
duce exactly the same raster output each time. Outside the
black oval area, the image is not completely erased and will
produce unpredictable results that appear as a ghost image
of the original full raster image. Fig. 13b shows the desired

Fig. 11. Grid-centered model of a rectangle from (1,1) to (3,4).
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Fig. 12. (a) Rendering four adjacent rectangle patterns using the
grid-intersection method results in extra black lines. (b) The 
problem is solved using the grid-centered method.

Grid Intersection Model Grid Centered Model

(a) (b)

result when the output image is rendered in a way that is
predictable and the image is completely erased outside of
the oval.

Language Interface

For the sake of modularity and reuse, the HP DeskJet 1200C
printer firmware is subdivided into major subsystems.
Printer system “glue logic” firmware holds these subsystems
together. The major subsystems include:

• Front-panel subsystem
• I/O subsystem
• Print engine subsystem
• Nonvolatile memory subsystem
• Printer Job Language (PJL) subsystem
• PCL and PostScript language subsystems.

Each subsystem is characterized by its own well-defined
interface. The printer system is an amorphous entity with
which each subsystem interacts. Thus, the printer system is

Fig. 13. (a) Some implementations of error diffusion add a random
factor, which can result in unpredictable ghost images when raster
operations are performed. (b) Omitting the random factor results in
predictable imaging.

Error Diffusion (Random Factor)(a)

Error Diffusion (No Random Factor)(b)

Fig. 14. HP DeskJet 1200C printer firmware architecture.
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the mortar that holds the various subsystems together. It is
thick in some places and thin in others, depending on how
closely the subsystem interfaces line up. Two other blocks
of firmware—the personality manager and the event han-
dler—are not subsystems in a strict sense, since they lack
their own well-defined interfaces. Instead, they use the in-
terfaces of other subsystems. However, they are significant
enough areas of the printer system that they are often re-
ferred to separately. Fig. 14 depicts the DeskJet 1200C
printer firmware architecture.

The key subsystem in this architecture, in terms of connectiv-
ity, is the language subsystem. The DeskJet 1200C PS printer
has two language subsystems: PCL 5C and PostScript Level 2.
The language subsystem is the most significant because it
indirectly interacts with all of the other subsystems, as well
as the event handler and the personality manager. The inter-
face between the language subsystem and the printer system,
which we will call the language interface, is the subject of
this section of this article.

At the most basic level, a language subsystem is an organized
piece of software that accepts input language data from the
printer system, interprets it, and produces a bitmap repre-
sentation of an image, which is passed to the printer system
to be transferred to the output media. In this respect, the
language subsystem deals with I/O access for language pars-
ing and with the print engine for imaging. The language sub-
system is also involved in other interactions with the printer
system such as personality management, access to nonvola-
tile memory, printer reconfiguration, printer system events
and status, and language subsystem events and status.

Both PCL 5C and PostScript fit this definition of a language
subsystem. The language interface was therefore designed
to accommodate both. This has tremendous advantages. The
overhead of having to maintain two different interfaces is
eliminated. The printer system code in nearly all cases be-
haves identically regardless of whether the active language
is PCL 5C or PostScript. This reduces the complexity of the
printer system code. There is also only one language subsys-
tem interface specification to maintain. Balancing the needs
of PCL 5C and PostScript has been easy. There are only a
few spots in the language interface that are specific to only
one language.
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Service Call Description When Called (Typically)

lang_init_req Requests initialization of the language
subsystem

System (re)initialization

enter_lang Requests that the language become the
interpreter of the input data stream.

Printer system determines the input stream
belongs to the language.

lang_die Requests language finish all imaging, free 
all resources, delete all processes, and
otherwise prepare to die.

Printer system determines the input stream
belongs to a different language.

media_fed Acknowledges feed_media call. Indicates 
media is fed.

Printer system completes media loading.

swaths_imaged Acknowledges swaths on image call have
been imaged.

Printer system completes transfer of image
to media.

async_periph_status Notifies language of a change in peripheral
status such as online, jam, etc.

Printer system has a change in status.

At the code level, the language interface consists of an infor-
mation window and an interface library. The information
window is a shared global data structure containing mostly
static information about each side of the interface. The in-
terface library contains two sets of routines. One set is pro-
vided by the language subsystem for the printer system to
call. The other set is provided by the printer system for the
language subsystem to call.

The information window and the interface library alone do
not make the language interface complete. The language
interface specification also includes a model-of-use section,
which describes how the information window and interface
library routines are used throughout various phases of print
job execution. There is also a detailed section on media
handling and imaging.

The information window for the DeskJet 1200C printer con-
tains such items as: printer status, default image settings

(paper size, character set, etc.), supported sources (input
trays), destinations (output trays), and media sizes, as well
as the printer’s network name and type. The interface library
contains the routines that handle the language subsystem’s
interactions with personality management, I/O access, imag-
ing, status and events, and other interactions. Figs. 15 and
16 depict the two sets of routines that make up the interface
library.

Model-of-Use Description

To best make use of the resources available, the primary one
being RAM available to the language, the DeskJet 1200C
printer system only has one language subsystem initialized
at any given time. After power-on, the information window
is initialized, and the printer goes online for the first time
with no language subsystem initialized. When a print job
enters the printer, the personality manager, with help from
the printer job language subsystem, determines which

Service Call Description When Called (Typically)

lang_init_rsp Acknowledges lang_init_req call. Ready to 
interpret data.

Language subsystem completes 
initialization.

get_input Requests an input data buffer Language parsing input data.

return_io_buf Returns an input data buffer to printer 
system.

Language has “emptied” input data buffer.

return_unused_input Returns a partially full input data buffer to
printer system

Language does not want input data, possibly
because of job boundary detection.

exit_lang Indicates this language is no longer the 
interpreter for input data.

Language detects PJL universal exit lan-
guage, or job_boundary flag set on get_input.

feed_media Requests media be fed. Imaging is to begin for a new page.

media_size Requests dimensions of a media size. Language wants to know initial imageable
area of media.

image Sends image swaths to the printer system to
be printed.

Language has rendered, and is ready to print
swaths.

send_output Requests data be sent to the host system Language wants to send data to host.

read_nvram Reads data from nonvolatile RAM. Language wants to retrieve data it has
stored in nonvolatile RAM.

write_nvram Writes data to nonvolatile RAM. Language wants to store data into 
nonvolatile RAM.

printer_control Flexible way to perform printer operations
such as I/O reconfiguration and special 
media control.

Language wants to reset I/O configuration
parameters or perform another special
printer operation.

async_lang_status Notifies printer system of a change in 
language status.

Language subsystem has a change in 
status.

restart Requests restart of the language 
subsystem.

Language command to restart or 
catastrophic error occurred.

Fig. 15. Interface library rou-
tines provided by the language
subsystem.

Fig. 16. Interface library rou-
tines provided by the printer
system firmware.
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language, PCL 5C or PostScript, the job needs to be sent to.
Assuming there is no language initialized, the lang_init_req
routine, provided by the target language subsystem, is called
at a predetermined address.

The lang_init_req routine passes the resources the language
subsystem will need to operate. The parameters passed to
the language on the lang_init_req call specify the location of
the information window, the RAM available to the language,
pointers to operating system routines, a range for process
priorities, and pointers to the printer system interface library
routines, including the initialization acknowledgment call,
lang_init_rsp. The language subsystem can call the read_nvram
and write_nvram routines to retrieve or set information in the
nonvolatile memory area allocated to the particular lan-
guage. A call to the lang_init_rsp routine, provided by the
printer system, indicates the language has finished initializ-
ing and is ready to accept a print job. The lang_init_rsp routine
also passes the addresses of the remaining language subsys-
tem interface library routines. Thus, with the exception of
the well-known lang_init_req routine, the printer system and
language subsystem are linked dynamically at run time.

When a print job is ready to be delivered and the appropriate
language is initialized, the enter_lang routine is called by the
printer system to indicate that the language subsystem is
now the parser of the input data stream. The language sub-
system uses the get_input routine to retrieve input data and
the return_io_buf and return_unused_input routines to return I/O
buffers back to the printer system. The language subsystem
can become involved in imaging and in other interactions
described below while parsing input data. The language sub-
system remains the parser of the input data stream until it
recognizes a valid exit event. The exit events on the DeskJet
1200C include the printer job language universal exit lan-
guage sequence, a nonzero job boundary flag as a get_input
routine parameter, an end-of-job character (control-D) for
PostScript, and others. Once an exit event is recognized, the
language subsystem calls the exit_lang routine to indicate that
it no longer wishes to be the interpreter of the input data
stream. Status reporting and any imaging that the language
is busy doing continue following an exit_lang call.

After an exit_lang call, the personality manager examines the
input data stream to determine where the next job goes. If
the job is targeted for a language that is already initialized,
the enter_lang routine is simply called again. This enables the
language subsystem to begin parsing the next job while the
previous job may still be printing. If the next job is for a dif-
ferent language than the one initialized, the lang_die routine
for the initialized language is called. This instructs the lan-
guage to finish any imaging it may be doing, return all I/O
buffers back to the system, delete the processes it spawned,
and otherwise prepare to die. Once a language returns from
lang_die, the printer system is free to initialize a new language
subsystem as described above.

In addition to the initialization, personality management,
and language parsing side of the interface, the language sub-
system is also involved in imaging. The language calls the
feed_media routine to cause a sheet of media to be fed in
preparation for the image to be placed on it. The request is
queued by the printer system if it is busy printing a previous
page. When the media is actually fed, the printer system
calls the acknowledgment routine, media_fed. After feeding

the media, the language subsystem renders the image into
image buffers that cover a portion of the output page, and
calls the image routine to pass the image data to the printer
system for printing. The language subsystem need not wait
for the media_fed routine before making image calls if it wants
to work ahead. The swaths_imaged call is the printer system’s
way of acknowledging it has finished processing the image
data and the language subsystem is now free to reuse the
associated image buffers. An end-of-page parameter on the
image routine indicates the printer system should eject the
page following the placement of the image data on the media.

When the language is initialized, the printer system and the
language subsystem exchange status and event signals
through the async_periph_status and async_lang_status routines.
The DeskJet 1200C printer system passes online, door open,
jam, and other status, as well as the eject page and manual
feed timeout events, to the language subsystem using
async_periph_status. The DeskJet 1200C language subsystem
passes its operating state (idle, busy, waiting) and a job end
event using async_lang_status. The printer_control routine is used
in the DeskJet 1200C to change the name and type of the
printer as it appears on AppleTalk networks.

Documents

The language interface specification is broken into two doc-
uments: a device independent language interface specifica-
tion and a device-specific document. This is to help facilitate
reuse of the language interface. The device independent
document provides a generic description of the information
window, descriptions of the routines in the interface library,
and the detailed model-of-use section, all of which apply to
any device using the language interface. The device-specific
document adds the level of detail required to specify the use
of the language interface on a particular device such as the
DeskJet 1200C printer.

For example, the feed_media routine, provided by the printer
system to cause a sheet of media to be staged for printing,
has parameters for specifying the source tray, destination
tray, media size, media type, and print quality. The device
independent language interface specification describes
these parameters in a generic sense, but does not enumerate
the valid values for a particular device. The DeskJet 1200C-
specific document is the source of information as to what
sources, destinations, media sizes, media types, and print
quality values are valid for the DeskJet 1200C.

This approach to splitting the language interface specification
has been beneficial. The DeskJet 1200C printer is the second
of three devices to use this language interface so far. The HP
PaintJet XL300 printer was the first, and the recently intro-
duced HP DesignJet 650C large-format plotter also uses the
language interface with the PostScript language (the Design-
Jet 650C does not support PCL 5C). The DeskJet 1200C and
DesignJet 650C are able to reuse the device independent
language interface developed for the PaintJet XL300 with
only three minor enhancements. The DeskJet 1200C device-
specific document was highly leveraged from the PaintJet
XL300’s with changes that reflect differences in the addresses
for the lang_init_req routine, in the supported media sizes, in
the front panels, and in other minor areas. The language
interface is currently being considered for use in other
products under development at various HP divisions.
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Since the language interface supports two different language
developers, it has to be simple, effective, efficient, and flex-
ible. The simple view of a language subsystem that is the
language interface fits the model of both PCL 5C and Post-
Script well. It is simple, and yet it is full-featured, supporting
the best that PCL and PostScript have to offer. Because the
language interface was designed with the complete firm-
ware architecture in mind, it is efficient in both I/O access
and imaging access. The split between a device independent
document and a device-specific document strikes a balance
between facilitating modularity and reuse and providing a
realistic, flexible framework for implementation on a device.

Ever since version 1.0 of the language interface specification
was released in May 1991, midway through the development
of the PaintJet XL300 printer, modifications to the language
interface have been through a formal change process. The
change process provides a way to develop consensus and
enhance the language interface in a controlled manner. Work-
ing with the PCL 5C development team and the PostScript
team at Adobe Systems, the HP language interface team
refined the interface using the change process. As each issue
presented itself, the engineers involved would address the
issue with a language interface change solution. A prelimi-
nary consensus would be reached, and a formal change
would be submitted on an electronic bulletin board. After a
review time, during which the change could undergo further
review and revision, the change would be closed and incorpo-
rated into the implementation. The language interface speci-
fication, and perhaps more important, the language interface
implementation, required constant communication with
both groups of language developers. The DeskJet 1200C
development team used the change process for both device
independent document changes and device-specific docu-
ment changes. The change process remains in place today to
accommodate the needs of new products in development.

Screen Calibrator

With the advent of color output devices, many users have
been disappointed with the consistency of the colors that
their peripherals produce. Their carefully crafted screen
image or scanned photograph is unacceptably distorted by
many printers.

But how does one go about giving users the “no surprise”
color that they need? The HP DeskJet 1200C printer
achieves this by allowing the user to help characterize the
particular CRT and display card. Armed with this knowledge,
the DeskJet 1200C printer driver for Microsoft Windows can
better match a user’s output with what appeared on the
screen.

Consider two RGB triplets: 128,0,0 and 180,0,0. Other than
saying that the latter is “redder” than the former to some
unknown degree, those numbers alone convey very little
information. When these RGB values are passed to various
printers on the market today, one quickly discovers that
their meaning is quite arbitrary; the actual colors output by
different printers are surprisingly different.

The RGB triplets used by Microsoft Windows are not rigidly
defined. Standards exist for specifying particular colors
(these standards are often referred to as color spaces), but

Fig. 17. Gamma values of identical monitors were found to vary
considerably.
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RGB values in most operating systems today are not specified
in a standard color space.

Returning to the problem at hand, the situation is even
worse than it seems at first glance. Not only does every
printer interpret RGB values differently, but so does every
display card and every monitor. To top it all off, significant
variations can be seen even among samples from the same
brand and model of display equipment.

To get some idea of how significant these differences were,
consider the case of several HP D1182 monitors that were
tested in-house. Driven by a variety of different display cards,
the monitors had gamma values (which will be explained
later) that ranged from 1.7 to 2.3 (see Fig. 17). In general, a
gamma difference of 0.1 was found to be noticeable. Overall
variations (various monitors and display cards) were even
more significant.

From this information, it was decided that no output match-
ing technique could simply ignore these variations and still
produce accurate hard-copy reproductions of CRT displayed
data. Fortunately, HP Laboratories had already done some
pioneering work in the field of CRT characterization.

If one can characterize a display system sufficiently, then it
is possible to predict (in a standard color space) what the
RGB triplet 128,0,0 actually means. By characterizing a color
printer such that printer RGB triplets can be obtained to
reproduce a standard color space value, one can then, in
theory, accurately reproduce the color the user sees on the
CRT on the output device.

The HP DeskJet 1200C, like all HP inkjet printers, shows
relatively little color variation from one sample to the next.
It can therefore be characterized statically with virtually no
impact on the matching solution. There is, however, another
problem that must be dealt with.

As one might imagine, different output technologies have
different ranges of reproducible color. By way of illustra-
tion, if the RGB triplet 0,0,255 is specified on the screen, it
will most likely produce a blue that the printer is unable to
match. Conversely, when a DeskJet 1200C printer is given
the triplet 255,255,0, it produces a yellow color that few
CRTs can match.

The total collection of colors that a device can produce is
referred to as the device’s gamut. Gamut mismatch is the
problem described in the previous paragraph. Since we are
using the display system as a reference point for the printer,
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the colors that the printer can produce but the CRT cannot
produce are of no real concern.

The other part of the mismatch, CRT colors that the printer
cannot accurately reproduce, is handled in the printer char-
acterization. Since the printer characterization is done in a
standard color space, information about nonreproducible
colors can be imbedded in that characterization. Out-of-
gamut colors are translated to colors the printer can produce
in a process known as gamut scaling.

All decisions about the printer are made before the color
matching software is ever put on the distribution disk. Char-
acterizing a particular CRT, however, is another matter en-
tirely. To match a CRT accurately, the DeskJet 1200C driver
uses an HP-developed screen calibrator tool to obtain the
information it needs about the display system of the user.

The introductory screen of the screen calibrator gives the
user three options. The Standard Screen option gives default
values for all the measurements the screen calibrator makes
(loosely based on a Sony Trinitron display). Two calibration
options—precise and most precise—give the user either a
set of color screens or two black and white screens. The
choice between the calibration options is a simple trade-off
between ease of use and accuracy.

To better explain the measurements the screen calibrator
makes, it is helpful to review how a CRT works. A CRT
makes images by hitting phosphors with electron beams. In
a color CRT, three different colors of phosphors (red, green,
and blue) are struck by three electron beams. As more en-
ergy is applied to a patch, it glows brighter. From a distance,
the colors of the three patches blend together to produce
the varying hues the CRT can display.

Now imagine sending a series of colors to the CRT, beginning
with 0,0,0 and running to 255,0,0. This series of reds will not,
on virtually all display systems, produce 256 patches with
equal-intensity steps between them. Furthermore, some val-
ues close to black, such as 5,0,0, often cause no noticeable
activation of the phosphors. This threshold of activation, or
deadband area, has been dubbed the dc offset of the display
system.

The color intensities produced after passing the activation
threshold follow an exponential curve:

IA� I
�

I.

where IA is the actual output intensity and II is the intensity
level desired. The intensities are normalized and have values
between 0 and 1. The exponent of this curve, known as
gamma, is the important piece of data to derive. Using the
screen calibrator, users perform tests that determine the dc
offset and gamma of a display system.

Figs. 18 and 19 show how the screen calibrator interacts with
the user to determine the gamma and dc offset. In Fig. 18,
the user moves the slider until the center of the rectangle
can just be distinguished from the completely black sides.
This allows the screen calibrator to measure the dc offset of
the display system.

The gamma determination is considerably more challenging
to the user. By alternating colored and black lines on the

Fig. 18. The screen calibrator tool lets the user help match the
DeskJet 1200C printed output to the monitor screen. This screen is
for determination of the monitor’s dc offset.

sides of the central patch, different intensities can be accu-
rately created (see Fig. 19). The problem is that the user
must somehow coerce the alternating lines into a solid
patch of color. This can be accomplished by the sophisti-
cated visual process of squinting, as suggested by the in-
structions, but moving away from the screen or removing
one’s eyeglasses can sometimes serve the same purpose.

Having successfully squinted and adjusted, the user has
made the center patch match the wide patches and the
whole rectangle appears to be of one intensity. This allows
the screen calibrator to correlate the actual intensity—the
bars—with the value that the display card and monitor need
to display that intensity. A curve is then fit to the points to
derive gamma.

The difference between the precise and most precise cali-
brations is twofold. First, the most precise calibration deter-
mines the gamma of the red, green, and blue channels of the
system separately, while the precise calibration uses white,
effectively using the user’s eye to average the three channels.

The second difference between the calibration options allows
adjustments for the kind of light that illuminates the printed
output. The user’s DeskJet 1200C prints a purple-colored

Fig. 19. Screen calibrator tool screen for determination of the
gamma of the monitor.
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patch, which the user then compares to a series of patches
on the screen. Depending on the kind of lighting around the
system, the user will see the printed patch as either more
bluish or more purplish than the displayed patches. The user
selects the displayed patch that most closely matches the
printed patch.

Once all this interactive information is gathered, color maps
are generated for each combination of dithering and media
type. This is necessary because each of these combinations
has a different effect on the colors produced by the printer.

Two main classes of color maps are generated. Match to Screen
maps faithfully represent on paper what appears on the user’s
screen. More Vivid maps increase the color saturation of the
output.

Thus, by interacting with users to determine the characteris-
tics of their specific display systems, the screen calibrator
tool of the DeskJet 1200C Windows driver helps deliver the
accuracy and consistency that users demand.
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