[J Hewlett-Packard Company 1994

A Short Primer on Debugger Internals

When using a debugger, the user typically wants to be able to stop the program at
various times during execution, print the value of a program symbol, follow the
program flow of control by stepping through the source lines in a function, or ex-
amine the program execution stack to determine how execution ended up at a
particular location.

To enable the user to perform many of these operations, a debugger must have
access to a lot of information, much of it related to program blocks, symbols, data
types, and source lines. Many debuggers read this information from the object
code file and store it in an internal symbol table for easy lookup and traversal.

A debugger uses the information in the symbol table to translate a symbolic loca-
tion specified by the user into a virtual address. Once a debugger has a virtual
address for a program location, it can set a program monitor (such as a break-
point, trace, or watchpoint) at that location. Once the virtual address for a program
symbol is known, a debugger can find its value and display the value according to
the symbol's type.

To determine the type and value of a language expression specified by the user,
which may range from a simple variable reference to a complex expression, a
debugger needs some way to determine if the expression is correct. One way to
implement this functionality is with a parser that translates the expression into
some sort of abstract syntax or intermediate language tree made up of operator
nodes and operand leaves. This tree is then evaluated to determine the type and
result value of the expression.

The contents of the symbol table are important to a debugger, but it also needs
access to the address space of the target program. On many UNIX systems,
debuggers control the target program with the ptrace() system call. With ptrace() a
debugger can read from and write to the program’s address space, execute the
program for one or many instructions, and send a signal to the program. For ex-
ample, once a debugger has translated a program location into a virtual address, it
uses ptrace() to write a special instruction into the instruction stream of the target
program. Execution of the special instruction causes the target program to stop
and the debugger to regain control of the target program.

December 1994 Hewlett-Packard Journal 39



