
 Hewlett-Packard Company 1994 ���
�� ����� �������	��	��� �����	�������� ��

��������	�� ������	� �	��
�

When the HP C1553A DDS-2 autoloader was designed, one of the primary goals
was to add the autoloader mechanism to a standard DDS drive with no hardware
modifications to the drive and minimum firmware modifications. The resulting
architecture allows the autoloader mechanism to be independent of drive hardware
and to be used with different drive products.

Originally, HP’s DDS tape drive product line was not designed to be used with an
autoloader. However, the requirement for a low-cost autoloader mechanism was
realized and steps were taken to add an autoloader to the current product line.
This required three basic steps:

• Design of the drive/autoloader interface, both hardware and software, requiring no
hardware changes to the drive

• Addition of the loader command set to the drive firmware
• Design of the autoloader electronics and firmware to enable the required

communications with the drive.

Drive/Autoloader Interface
Since the drive had not been designed with the intention of interfacing to an auto-
loader, there was very little hardware available to create an interface to the auto-
loader mechanism. It was decided that a port that was used for debugging purposes
in manufacturing test could be used to communicate with the autoloader, since it had
no use outside the manufacturing line.

The port has four data lines and a single address line along with the required
handshake lines for the drive’s 68000 processor. This allows a total of four regis-
ters, two write-only and two read-only. It was decided that these should be 8-bit
registers accessed by two successive 4-bit operations. The four registers are the
drive status register, the autoloader status register, the drive autoloader command
register, and the autoloader drive report register.

Two registers are used as a command report mechanism to allow the drive to send
commands to the autoloader. This is the basis for the control of the autoloader.
When the drive receives an SCSI command that requires autoloader operation, it
writes the appropriate single-byte command code into the drive autoloader com-
mand register as two four-bit writes. When the autoloader has completed the opera-
tion it places the single-byte report in the autoloader drive report register and
asserts an interrupt signal to the drive to indicate that the register should be read.

Commands that require parameters are preceded by a push parameter command.
This is a single-byte command that has the top bit set. All other commands have the
top bit clear. This allows the remaining seven bits to be pushed onto a parameter
stack. Successive push parameter commands allow more than seven bits to be
pushed.

The autoloader status and drive status registers are used for handling the front
panel. Since the autoloader’s front panel is completely different from the stand-
alone drive’s, it is accessed via the autoloader processor. However, since the drive
processor has the responsibility for telling the autoloader what to do, the front-
panel switches are read and interpreted by the drive via the autoloader status
register. This allows maximum flexibility of operation and configuration.

To maximize the usability of the autoloader, it was decided to use a character-
based LCD display to give messages to the operator. Since most of the status
information comes from the drive, the drive status register is used to pass status
codes to the autoloader to display status messages on the display. The text for the
messages is stored in the autoloader processor ROM. While it would have been
more flexible to store the messages in the drive, there was insufficient space.

Drive Firmware Architecture
The changes required to the drive firmware to implement the drive/autoloader
interface relate to two distinct areas. The architecture of the firmware for the
autoloader is shown in Fig. 1.

First, the normal front-panel handling task within the firmware is replaced by a new
version, which communicates drive status to the autoloader. This receives status
information from both the SCSI task and the drive task on the drive. This status
information is passed over the drive/autoloader interface rather than being dis-
played on the drive front panel. The SCSI task is changed to read the buttons on
the new front panel as well as the eject button on the drive. The drive eject button
is left active so that a tape can still be recovered from a drive in an autoloader
even if the autoloader hardware is not working.

Secondly, the SCSI task required the addition of the functionality to handle the
SCSI medium changer command set. This involved adding new functionality to the
task to interpret a new class of commands and pass them on to the autoloader

Fig. 1. Autoloader firmware architecture.

Display
Task

Drive/
Autoloader
Interface

Task

Changer
Task

Registers

Display
Control

Autochanger

Changer Commands
and Reports

Mechanism
Control

Mechanism
Commands
and Reports

Drive and
Changer Status

Panel
Task

SCSI
Task

Drive
Task

SCSI
Mechanism

Control

Drive
Status

Drive Commands
and Reports

Drive

Drive Status

Changer Commands and
Reports

Changer Status

��� � � � � � � �!�!)�!.� ���	� �!3(!007���'�. � �+1.*�(Hewlett-Packard Company 1994

mechanism. Parsing the commands on the drive allows the drive to remain in
control of the whole autoloader and minimizes the risk of conflicting commands
going to the drive and autoloader. It also avoids duplicating the software to parse
SCSI commands for both the drive and the autoloader.

Autoloader Firmware Architecture
The autoloader firmware consists of three distinct functions. These are communi-
cating over the interface to the drive, handling the display, and controlling the
autoloader mechanism.

These three functions are implemented in three separate tasks running in a round-
robin fashion with a 1-ms time slice for each function. This made development of
the software easier and allowed the separate functions to be implemented with
minimal risk of interference with one another.

To save hardware costs, the drive/autoloader interface registers are not imple-
mented as hardware latches. Instead, the I/O lines from the drive are wired directly
into the ports of the H8/325 microcontroller used to control the autoloader mecha-
nism. The H8 has a set of internal memory locations that mirror the imaginary
hardware registers. When the select line from the 68000 is asserted, indicating an
access to the drive/autoloader interface registers, this causes an interrupt to the
H8. The H8 reads its I/O lines and handshakes the data to or from the 68000. This
gives the appearance to the 68000 of slow hardware latches. The tasks running on
the H8 merely need to access the internal memory locations as if they were the
registers.

The drive status register is treated slightly differently from the other registers in the
drive/autoloader interface. Because the drive can send repeated status values to
this register faster than the display task on the H8 can read them, the values are
queued within the H8 to be read in sequence. This ensures that an important
status code is not lost behind a less important one. In addition, certain status
codes cause flags to be set within the H8 that determine whether the drive is in a
certain state. This allows tracking of the state of the drive.

Mark Simms
Development Engineer
Computer Peripherals Bristol

��.0.% #!� %/� #.%,,! � �5�)!0�(� "%*#!./� �)+1*0! � +*� �� ,%�'!.

�.)�� +*� �*� ! #!� *!�.� 3$!.!� �� $1)�*� #.%,/� 0$!� ��.0.% #!�

�$!� "%*#!./� �.!� /,.1*#� /$10�� #.%,,%*#� �� ��.0.% #!� %*� ��/!� +"� �

,+3!.� "�%(1.!�� �* � �.!� +,!*! � �5� �� /+(!*+% �� �$!� "%*#!./� �.!

)+1*0! � +*� �*� �.)�� 3$%�$� ,1/$!/� �* � ,1((/� 0$!� ��.0.% #!�

�$!� �.)� ��*� ,1((� �� ��.0.% #!� +10� +"� 0$!�)�#�6%*!� �* � ,1/$� %0

%*0+� 0$!� .%2!�� �$!� ,%�'!.� �.)� %/�)+2! � �5� �� �!(0�� 3$%�$� %/

 .%2!*� �5� �� �� #!�.�)+0+.�

�$!� ��.0.% #!� %/� *+0� !/%#*! � "+.�)�*%,1(�0%+*� �5� ��)!�$�7

*%/)�� /+� 0$!� �$+%�!� +"� "!�01.!/� 0$�0� 3!.!� /1%0��(!� "+.� #.%,7

,%*#� �* � �(%#*)!*0� 3�/� (%)%0! �� �$!� +�2%+1/� ! #!/� 3!.!

+0� /,!�%"%! � %� 0$!� ��.0.% #!� /0�* �. �� �* � %0� 0++'� 03+� 5!�./

0+� $�2!� /+)!� +"� 0$!/!� "!�01.!/� � ! � 0+� 0$!� /0�* �. �

Y Motion. � �$!� ��)+0%+*�)+2!/� 0$!� ��.0.% #!� �* � ,%�'!.� �.)
1,� �* � +3*�� �$!� ,%�'!.� �.)� %/�)+1*0! � +*� �� ,(�0"+.)� 0$�0

%/� (%"0! � +.� (+3!.! � �5� 03+� ��)/�� �$!� ,%�'!.� �.)� .1*/� +*�

�� /$�"0�� �((+3%*#� 0$!� ��)+0%+*�� �$!� /$�"0� �* � 0$!� +0$!.� �7

)+0%+*� ,�.0/� %*�(1 %*#� 0$!� #!�.�)+0+.� �* � �!(0� �.!� �((

)+1*0! � +*� 0$!� ,(�0"+.)�� �+**!�0%+*/� �.!�)� !� 0+� 0$!/!

,�.0/� �5� �� "(!4%�(!� �%.�1%0�� �$!� ,(�0"+.)� $�/� 0$.!!� ,%*/�� +*!

+*� 0$!� (!"0� �* � 03+� +*� 0$!� .%#$0�� 3$%�$� ,.+&!�0� +10� 0$!� /% !/

�(++'%*#� ".+)� 0$!� ".+*0� +"� 0$!� 1*%0�� %*0+� ��)/�� +*!� +*� !��$

/% !� +"� 0$!� 1*%0�� �$!� ,%*/� .1*� %*� 0.��'/� 0$�0� .!/!)�(!� !/��(�7

0+.� /$�,!/�� 0$�0� %/�� 0$!5� $�2!�
�7 !#.!!� /(+,!/� 3%0$� $+.%6+*0�(

,+.0%+*/�� �$!� ,%*/� ��*� +*(5�)+2!� 2!.0%��((5� �!��1/!� 0$!5� �(/+

.1*� %*� /(+0/� %*�)!0�(� ,(�0!/�� �$!� ��)/� 3%0$� 0$!� /$�,! � /(+0/

)+2!� ���'3�. /� �* � "+.3�. /� �* � .%2!� 0$!� ,%*/� �* � 0$!

,(�0"+.)� 1,� �* � +3*� �/!!� �%#�� 	��� �+0$� ��)/� �.!� .%2!*� �5

+*!� �� #!�.�)+0+.�� �$!� +*!� +*� 0$!� .%#$0� $�/� ��)+(! � .��'

�* � %/� .%2!*� %.!�0(5� �5� �� #!�.� +*� 0$!� #!�.�)+0+.�� �$!� (!"0

��)� %/� �+**!�0! � �5� �� (!2!.� ��.+//� 0$!� �+00+)� ".+*0� +"� 0$!

1*%0� 0+� 0$!� .%#$0� ��)�� �* � %/� .%2!*� �5� 0$!� /�)!� �� #!�.

)+0+.�� �$%/� ��)� �..�*#!)!*0� 0+(!.�0!/� %*���1.�0!� ,+/%0%+*%*#

+"� 0$!� �� #!�.�)+0+.� �* � ��)/�� �$!� $!%#$0� +"� 0$!� ��)� �+)7

,+*!*0/� 0$!)/!(2!/� !0!.)%*!/� 0$!� $!%#$0� ���1.��5� +"� 0$!

,(�0"+.)�� 3$%�$� !�.(5� ��(�1(�0%+*/� /$+3! � %/� � !-1�0!�� �$!

,%*/� ��*� �!� �*53$!.!� +*� 0$!� $+.%6+*0�(� ,+.0%+*/� +"� 0$!� ��)

0.��'/�� 3$%�$� �.!� ��+10�
7))� (+*#�� �$!� "(�0� ,(�0!� �..�*#!7

)!*0� +"� 0$!� ��)/� �* � 0.��'/� "%0/� *!�0(5� %*0+� 0$!� 1*%0� +*

!%0$!.� /% !� +"� 0$!� ,(�0"+.)�� �$!� (!"0� ��)� !40!* /� %*0+� 0$!

)�#�6%*!� .+0�0%+*� �.!��)�'%*#� !40.�� 1/!� +"� 0$!� /,��!� 3$!*

0$!�)�#�6%*!� %/� *+0� .+0�0%*#�

R Motion. � �$!� ��)+0%+*� %/� 0$!� .+0�0%+*� +"� 0$!�)�#�6%*!�� �$%/� %/
��$%!2! � �5� �� (�.#!� %/'� %*� 0$!� 0+,� +"� 0$!� 1*%0�� �$!�)�#�6%*!

/%0/� +*� 0+,� +"� 0$!� .%2!�� �$!� 1/1�(� .%2!� (% � �0+,�� %/� .!,(��!

3%0$� +*!� 0$�0� $�/� 0$!� ".+*0� ! #!� �10� �3�5� 0+� �((+3� 0$!� ��.7

0.% #!� 0+� �!� (%"0! � /0.�%#$0� 1,� 3%0$� 0$!� ��7))� +2!.(�,�� �$!

.+0�0%*#� %/'� %*� 0$!� 0+,� +"� 0$!� 1*%0� $�/� 03+�)+(%*#/� �00��$!

0+� %0� 0$�0� $�*#� +3*� +*� !%0$!.� /% !� +"� 0$!�)�#�6%*!�� �((+37

%*#� %0� 0+� �!� (+��0! � �* � 01.*! � �.+1* �� �.%#%*�((5� 0$!� .+0�07

%*#� %/'� %*� 0$!� 0+,� +"� 0$!� 1*%0� 3�/� #+%*#� 0+� �!� %*/% !� 0$!

1*%0�� �+3!2!.�� �!��1/!� +"� 0$!� !40.!)!� 2!.0%��(� /,��!� ,.+�7

(!)/�� 0$!� %/'� %/� ��01�((5� ,�.0� +"� 0$!� !40!.%+.� /1."��!� +"� 0$!

1*%0�� �$!� %/'� .+0�0!/� ���� !#.!!/� �* � %/� .%2!*� �5� �� �� #!�.

)+0+.� 0$.+1#$� �� �(10�$�� �$!� �(10�$� �((+3/� 0$!� %/'� 0+� �!

 .%2!*� %*0+� �*� !* � /0+,� "+.� ���1.��5� 3$%(!� ,.!2!*0%*#� �)7

�#!� 0+� 0$!� #!�.�)+0+.�� 3$%�$� 3�/� "+1* � %*� !�.(5� ,.+0+05,!/�

�$!� �(10�$� %/� �� �1/0+)� !/%#*� �* � .%2!/� �� #!�.� "+.)� +*� 0$!

 %/'�

Z Motion.� �$!� ��)+0%+*� %/� 0$!�)+2!)!*0� +"� 0$!�)�#�6%*!� %*
�* � +10� +"� 0$!� �10+(+� !.�� �$!�)�#�6%*!� $�/� �� (�.#!� .��'

�#!�.� "+.)�� +*� +*!� /% !�� �$%/� !*#�#!/� 3%0$� �� #!�.� %*� 0$!

1*%0�� 3$%�$� %/� .%2!*�� 0$.+1#$� �� �1/0+)� �(10�$�� �5� 0$!� �� �

#!�.�)+0+.�� �)%�.+/3%0�$� ��� /3%0�$�� ��0%2�0! � �5� �� .+�'!.

�.)� %* %��0!/� 3$!*� ��)�#�6%*!� $�/� �!!*� %*/!.0! � �5� 0$!

1/!.�� �$!� %*/!.0� �* � !&!�0�)!�$�*%/)� ���)+0%+*�� %/� !(%�!.7

�0!(5� !/%#*! � 0+�)%)%�� 0$!� "�)%(%�.� $+)!� 2% !+� .!�+. !.

05,!� +"� ��0%+*�� �/!.� 0!/0/� /$+3! � 0$�0� 0$%/� ��0%+*� 3�/� "�)%(7

%�.� �* � %*01%0%2!�� �$!� ��0%+*� +"� 0$!� 1/!.� %/� 0+� ,1/$� 0$!�)�#�7

6%*!� %*0+� 0$!� �10+(+� !.� 0$.+1#$� 0$!� ++.�� 3$%�$� %/� /,.1*#

/$10�� �$!� �� /3%0�$� !0!�0/� 0$!�)�#�6%*!� �* � 0$!� �� #!�.

)+0+.� /0�.0/�� �$!*� 0$!�)�#�6%*!� %/� ,1/$! � �� (%00(!� "�.0$!.� 0$!

#!�.� !*#�#!/� �* � ,1((/� 0$!�)�#�6%*!� ".+)� 0$!� 1/!.�� �*� !*0.5

0$!�)�#�6%*!� �+),.!//!/� �� /,.%*#7(+� ! � ,1/$!.� �.)�� 3$%�$

%/� 1/! � +*� !&!�0%+*�� �$!� �� /3%0�$� �(/+� !0!�0/� 3$!*� 0$!�)�#7

�6%*!� $�/� .!��$! � 0$!� "1((5� $+)!� ,+/%0%+*�� 0$�0� %/�� "1((5� %*0+

0$!� 1*%0�� �*� !&!�0%+*� 0$!� �� #!�.�)+0+.� ,1/$!/� 0$!�)�#�6%*!

+10� 0$.+1#$� 0$!� +,!*! � ++.�� /� 0$!� #!�.� %/!*#�#!/�� 0$!

/,.1*#� ,1/$!.� �+),(!0!/� 0$!� !&!�0%+*�� �$!�)�#�6%*!� %/

��1#$0� �5� �� /)�((� /,.1*#� ,(�/0%�� ,�.0� 0+� !*/1.!� �� �+*/%/0!*0

!&!�0� %/0�*�!�� �$!� %/0�*�!� %/� +2!.� ���))�� 3$%�$� �((+3/

$�* %��,,! � 1/!./� 0+� #.%,� �* � .!)+2!� 0$!�)�#�6%*!�

�$!� (% � �//!)�(5�� 3$%�$� �+*0�%*/� 0$!� �� �* � ��)+0%+*/�� 3�/

+*!� +"� 0$!� (�0!.� /1��//!)�(%!/� !/%#*! � �* � ,.+2! � 2!.5

 %""%�1(0� 0+� "%*�(%6!�� �$!� ,$5/%��(� /,��!� .!/0.%�0%+*/� �* � 0$!

 !/%.!� 0+� #!0� 0$!� .%#$0� "!!(� "+.� 0$!� 1/!.�)!�*0� 0$�0� /!2!.�(

%0!.�0%+*/� +"� !/%#*� $� � 0+� �!� ,.+0+05,! � �* � 0!/0! �

