Structured Analysis and Design in the
Redesign of a Terminal and Serial

Printer Driver

The project team felt that the objectives could not be met with a traditional
design approach. Structured analysis with real-time extensions and

structured design provided an effective alternative.
by Catherine L. Kilcrease

This paper describes the use of structured analysis with real-
time extensions and structured design in the redesign of the
terminal and serial printer driver for the MPE/iX operating
system on the HP 3000 computer system. The redesign proj-
ect objectives were to:

Maintain the current block mode performance (the main
mode of data transfer for terminal I/O is to transfer
characters in blocks of data)

Improve HP 3000 transaction processing performance on
industry-standard benchmarks by 5% to 10% through a 20%
to 40% reduction in the terminal driver path lengths
Maintain the current level of functionality

Produce a high-quality, supportable, and maintainable
product.

The project team felt we could not achieve these goals with
the then-current development techniques. Object-oriented
methods were ruled out because of the performance require-
ments. We elected to use structured analysis! with real-time
extensions and structured design.?

The Redesign Project

The original driver was based on the terminal driver of the
HP 3000 MPE V operating system. During its design, specifi-
cation of the terminal and printer subsystem was unclear and
led to many problems. Since the original driver had added
many features since its first release, it was important to have
a complete specification of the subsystem to meet the proj-
ect goals. Structured analysis provided this.

The original driver consists of seven modules that handle the
I/0O between the HP 3000 file system, the MPE/iX operating
system, and the data communication and terminal controller
(DTC) (Fig. 1). There are two storage managers. The termi-
nal storage manager provides the interface between HP 3000
file system read and write intrinsic calls and the terminal
logical device manager or fast write concat procedure. The
serial printer storage manager provides the interface between
HP 3000 file system write intrinsic calls and the serial printer
logical device manager. High-level I/O is the old path be-
tween the file system and the logical device managers. It
generally handles non-read/write I/O (controls, opens,
closes). There are two logical device managers: one for ter-
minals and one for serial printers. The logical device manag-
ers transfer data between the user stack and the data com-
munication buffers for reads, writes, and controls. The fast
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write concat procedure processes writes received from the
terminal storage manager and sends them to the terminal
and serial printer device manager (it provides a faster write
path for terminals). The terminal and serial printer device
manager communicates read, write, and control information
to the data communication and terminal controller (DTC)
through the Avesta Device Control Protocol. The lower inter-
face of this protocol is the flow control manager. The flow
control manager provides reliable transport between the HP
3000 and the DTC by implementing a transport protocol
called the Avesta Flow Control Protocol. The storage manag-
ers and fast write concat procedure are invoked by proce-
dure calls. The interface between the other modules in the
driver and the operating system is message-based via MPE/
iX ports.
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Storage Managers
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Managers
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Device
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Fig. 1. Original driver architecture.
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Fig. 2. Redesigned driver architecture.

Path trace utility traces of the original driver were analyzed
to determine good opportunities for path reduction. The rede-
sign architecture then incorporated the best reduction ideas.
The performance improvement is gained from streamlining
the path for the most common I/O through the use of direct
procedure calls, and from a design emphasizing efficient
operation.

The new redesigned driver consists of three modules with
three layers in each module (Fig. 2). The three layers are
logical, device, and transport. The logical layer acquires the
resources needed to complete the I/O request and transfers
the data from (to) the user stack into (out of) a data commu-
nication buffer. The device layer handles the Avesta Device
Control Protocol, which is the mechanism to communicate
with the DTC. The transport layer implements the Avesta
Flow Control Protocol (transport protocol) and interfaces
with the LAN driver.

The three modules in the redesigned driver are the fast I/O
manager, the deferred I/O manager, and the inbound I/O
manager. The fast I/O manager is invoked by the file system
with a procedure call. It handles the most commonly exe-
cuted I/O: reads, writes, and terminal controls (e.g., change
speed, parity, etc.). It attempts to process each request to
completion. If it cannot complete the processing because of
the lack of some resource, the fast I/O manager will block
until the resource is available. If the I/O cannot be blocked
(i.e., it is no-wait I/O), then the fast I/O manager sends the
I/O to the deferred I/O manager. If the request cannot be
completed because the “window” is closed at the transport
level, the request is also sent to the deferred I/O manager.
The deferred I/O manager has a message-based interface. It

handles deferred requests from the fast I/O manager and I/O
requests that are made through the “old” high-level I/O path,
such as open, close, and preemptive writes. The inbound
I/O manager also has a message-based interface. It receives
inbound packets from the LAN driver. If the packet is a reply
to an I/O request, the inbound I/O manager sends a mes-
sage to either the fast I/O manager or the deferred I/O man-
ager, depending on which of the two initiated the request. It
also handles asynchronous events.

Software Life Cycle

There was some concern that structured analysis and struc-
tured design documents would not fit into documents pro-
duced by the product life cycle. With our recently revised
life cycle? this turned out to not be an issue. Our software
product life cycle contains the following phases and produces
the following lab documents:

Phase Method Document
Proposal
Investigation Investigation Report
Development
Specify Structured  External Specification
Analysis Internal Specification
Design Structured  Internal Design
Design
Integration/Test Test Plan
Support
Discontinuance

The external specification document describes the environ-
ment in which the product operates, the functional capabili-
ties of the product, and the details of the product’s user
interface. The internal specification describes the internal
requirements of the system and the internal interfaces be-
tween the system components. The internal design contains
the complete detailed description of the algorithms and data
structures to be used in the implementation of the product.
The test plan outlines the types of tests to be used to guar-
antee the quality of the finished product upon release from
the lab.

Training

There are four groups of people who need training in struc-
tured analysis: development engineers, inspectors, online
and offline support engineers, and maintenance engineers.
Training in structured design for the nondevelopment engi-
neers is not necessary. The structured design document
components are easy to comprehend. The project team took
a class in structured analysis with real-time extensions and
structured design at the start of the project during the inves-
tigation phase.4 It would have been helpful to have had the
training and some experience with the method before the
start of the project. The structured analysis training for the
nondevelopment engineers was developed by the project
lead during the structured analysis phase before inspection
of the internal specification.
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Fig. 3. Data flow diagram.

Structured Analysis Overview

Structured analysis is the use of tools to produce a structured
system functional specification. A structured specification is
easier to read and understand than the classical textual func-
tional specification because it is graphical and contains many
small specifications. The system is broken into small under-
standable pieces. The tools of structured analysis can be
categorized into five functions. The redesign project used an
extension of structured analysis for real-time systems. In
structured analysis processes are independently data-trig-
gered and infinitely fast (i.e., a process will transform the data
when the data is present). Real-time extensions (i.e., the use
of control information) allow the system to take other factors
or conditions into consideration before enabling or disabling
a process.

Function Tool

finish_read

Partition the Requirements
Describe Logic and Policy
Show the Flow of Control
Describe Control Processing
Track and Evaluate Interfaces

Data Flow Diagrams
Process Specifications
Control Flow Diagramst
Control Specificationst
Data Dictionary

The data flow diagrams show the major decomposition of
function and the interfaces among the pieces. They show the
flow of data, not control. It is the system from the data point
of view. Process specifications document the internals of the
primitive data flow diagram processes in a rigorous way
through the use of structured English, decision tables, or
decision trees. They describe the rules of data transformation
and the policy, not the implementation. Control

t Real-time extensions
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flow diagrams share the same characteristics and relation-
ships as data flow diagrams except that they deal with con-
trolling the system. They show the flow of control in the
system. A control specification converts input control signals
into output control signals or into process controls. It has
two roles: one to show how control is processed, and the
other to show how processes are controlled (activated or
deactivated). The data dictionary is an ordered list of data
and control flow names and data and control store names
and their definitions. Data flow diagrams and control flow
diagrams can be combined together into one diagram.

Figs. 3, 4, and 5 illustrate the components of structured analy-
sis with real-time extensions. Fig. 3 is a combination data
flow diagram and control flow diagram. The solid arrows are
data flows, the broken arrows are control flows, the solid
vertical bars are state matrixes, and the circles are processes.
The finish_read process transforms the device_read_reply (indica-
tor that read data is ready) and the read_data (buffer of data
input by the user) data flows into the logical_IO_reply data flow
using information from logical_IO_info. The freed buffer flows
out (unused_buffer data flow). The data dictionary entries for
the data flows are:tt

device_read_reply (data flow) = *read reply from device layer to *
*logical layer. Contains read status, *
*length, and data pointer. *

status

+ length

+ data_pointer

Tt Here the asterisks indicate comments, the square brackets indicate a choice of one of the

enclosed items, the vertical bar means OR, and the plus sign means AND. TC means terminal
control, QIO is quiesce /0 (flush outstanding input/output and wait for completion), RID
means request identification number, and TIO is terminal I/O.



FIOM_device_lO_reply (data flow) = [ device_read_reply
| device_write_reply
| device_TC_reply
| device_preempt_write_reply

]

FIOM_logical_reply (control flow) = [ logical_read_reply
| logical_write_reply
| logical_TC_reply
| logical_QIO_reply
| logical_disconnect
| logical_abort

]

FIOM_IO_pending
+ FIOM_IO_wait_port
+ DIOM_IO_pending
+ logical_RID_pending
+ logical_abort_RID_pending

logical_IO_info (data flow) =

logical_io_reply (data flow) = [ logical_read_reply
| logical_QIO_reply
| logical_TC_reply
]

read_data (data flow) = buffer_ID
+ read_status

The process specification for finish_read (Fig. 4) describes
how data is transformed. Control information is a little trick-
ier to understand. For example, the FIOM_device_lO_reply is
transformed into a control flow, FIOM_logical_reply, by the
classify_logical_reply process shown in Fig. 3. The control flow
enters the state event matrix, FIOM_logical_cmpl_SEM. The state
event matrix has memory, that is, it remembers the state of
the fast I/O manager. From the FIOM_logical_cmpl_SEM event

NAME:
23233

TITLE:
finish_read

INPUT/OUTPUT:
read_data : data_in
device_read_reply : data_in
unused_buffer : data_out
logical_IO_info : data_inout
logical_IO_reply : data_out

BODY:
transfer data (if any) to destination, doing backspace processing and freeing
unused buffers during the transfer;

send logical_IO_reply with status from device_read_reply or read_data msg;

Fig. 4. Process specification for process finish_read.

matrix (Fig. 5), one can see that the finish_read process is acti-
vated when the FIOM_logical_reply is a logical_read_reply and the
state is read_pending. Empty boxes indicate error conditions.

The Project and Structured Analysis

During the investigation phase, the team considered five
different architectures. The final architecture is a refined ver-
sion of one of them. At the start of the development phase,
we needed to start the specification of the system, define the
architecture, determine the changes that were needed in the
TIO support modules and operating system, and update the
investigation report. Determining the changes we needed
from the MPE/iX operating system lab and the project that
handled the driver configuration modules would have made
more sense in the design phase and not the specification
phase, but it could not wait until then.

23.2-s14
FIOM_logical_cmpl_SEM
event FIOM_logical_reply = FIOM_logical_reply = FIOM_logical_reply = FIOM_logical_reply = FIOM_logical_reply = FIOM_logical_reply =
state “logical_read_reply” “logical_write_reply” “logical_TC_reply” “logical_QIO_reply” “logical_disconnect” “logical_abort”
closed
open_pending
idle finish_write/ do_disconnect/ do_abort/
idle close_pending idle
. finish_read/ finish_write/ do_disconnect/ do_abort/
read_pending idle idle close_pending idle
. finish_QIO/ do_disconnect/ do_abort/
QI0_pending idle close_pending idle
" finish_TC/ do_disconnect/ do_abort/
TC_pending idle close_pending idle
close_pending
close_timer_running

Note: If an entry is blank, it is an “impossible” condition which should not be encountered due to subqueue restraints, etc.

If the condition is hit, error code (not shown) will take appropriate action.

Fig. 5. State event matrix.
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We started structured analysis using the fragmentation tech-
nique. This technique selects a set of inputs and outputs and
creates a fragment model of processes that transform that set
of data. The composite model is created by grouping the
fragments. We tried to keep the system specification separate
from the architecture. We broke the system into parts based
on the type of I/O. For example, one fragment modeled the
read path. It specified what happened with read requests
that were processed completely without blocking for a re-
source, read requests that blocked for a resource (such as a
datacomm buffer), and read requests that could not be pro-
cessed because of a lack of a resource but could not block
(no-wait read). The last type of read request could not be
processed in a procedure call environment, but needed to be
handled in a message-based environment (deferred 1/O
manager) so that the user process could continue running
even though the read request had not been completely
processed.

It became increasingly clear when we tried to tie the struc-
tured analysis fragments together that not taking the archi-
tecture into consideration was a problem. The goal of the
redesign was to improve the performance while maintaining
the same level of functionality. We had captured the func-
tionality of the driver in our fragments based on type of 1/O.
However, each fragment contained fast paths (fast in terms
of number of instructions—the fast path could block on a
resource) and slower paths (required the message-based
interface, which is much slower than a procedure call inter-
face). It was difficult to figure out how to combine all the
fast paths, which were spread out across many fragments.
This is where one major difficulty with structured analysis
arose—how to relate the functional specification to the archi-
tecture. The architecture had been selected as the best way
to achieve the performance goals. We felt that to create the
specification without consideration of the architecture would
make the design phase more difficult. We stopped structured
analysis work for awhile, and concentrated on completing
the architecture. Hatley and Pirbhai> helped us resolve the
architecture-versus-specification dilemma.
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msg

Fig. 6. Context diagram.

Viewing the system from the data point of view carried over
into our parallel architecture discussions. At one point, we
physically simulated data flowing through the driver using
pens and erasers as data and people as modules. This helped
us visualize the interface operation and problems that arise
from a mixed procedural and message-based environment.

For complex areas, we used existing code wherever possible
to derive decision trees and state transition diagrams. As we
became more comfortable with structured analysis, we were
able to assign work to each member. Material was reviewed
and discussed at project meetings.

One aspect of structured analysis is the iterative nature of
the method. One makes a first pass at the data flow diagram,
and then discards or revises it until satisfied. Once we felt
satisfied with our architecture, we set aside our old struc-
tured analysis work and started again. This time our ap-
proach was to use structured analysis to specify the system
given the architecture instead of specifying the system inde-
pendent of the architecture. We felt this was necessary to
meet our performance goals and to help clarify the interfaces.
Where before we based the specification on the type of 1/O,
this time we based the specification on fast (able to com-
plete within the driver), deferred (needs operating system
help to complete), or inbound paths. Using the data inter-
viewing technique, we started with the context diagram (Fig.
6) and the level 1 and 2 diagrams (Figs 7 and 8). The level 1
diagram has three processes: DIOM, FIOM, and II0M, which
make up the redesigned driver. The level 2 diagrams (of
which Fig. 8 is an example) have a process for each layer of
the architecture and some general utility processes. After
these diagrams were done, we broke the work up by pro-
cess. We were able to use many of the diagrams from the
earlier structured analysis work.

When reviewing data flow diagrams and process specifica-
tions, issues, questions, and problems were easy to detect.
They tended to stand out on the diagrams. It was easy to see
if data was missing or wrong or hadn’t been initialized. For
example, in the finish_read process specification (Fig. 4),
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Fig. 7. Driver level 1 diagram showing the three major modules: the fast I/O manager FIOM, the deferred I/O manager DIOM, and the in-

bound I/O manager IIOM.

diagrams (see Fig. 6) were used to determine interfaces and
to help define the TIO support and operating system
changes that the driver required.

Originally, we did not have an internal specification in our
plans. However, the internal design was appropriate for the
structured design but not the analysis, and we needed a doc-
ument for the structured analysis work. Therefore, we split
the design period into two periods and added an internal
specification document. The internal specification contained

unused_buffer was a data flow out of the process but the
buffer wasn’t freed in the first draft of the specification. We
kept a list of issues and questions and their resolutions dur-
ing the structured analysis process.

A month before the external specification was due, we
stopped structured analysis work and concentrated on writ-
ing the external specification document. Much of it was
taken from existing documents since our upper and lower
interfaces didn’t change. The top-level structured analysis
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a brief introduction about the context diagram and descrip-
tions of the interfaces. The rest of the document was gener-
ated using Teamwork, a software tool for structured analysis

and structured design from Cadre Technologies, Inc.

Structured Analysis Recommendations

Data flow diagrams generally “feel right or wrong.” Tom
DeMarcol encourages engineers to throw away diagrams
several times. The use of structured analysis to specify a
system naturally raises the questions that need to be
answered about the product.

If we had to do it all over again, we would have resolved
the architecture-versus-structured-analysis problem earlier,
and not tried to do structured analysis without considering
the architecture of the system. We did not use the approach
outlined by Hatley and Pirbhai,> but we did use something
related to it. There is a fine line between considering the
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architecture and including design in the specification. Be-
cause this was a redesign and performance was important,
we had already analyzed the original driver to find opportu-
nities for shortening the path lengths. These opportunities
needed to be incorporated into the design. We didn’t know
how to do that at the design phase if they weren’t included
in the specification as well, so we put the architecture in at
the top levels of the specification (fast I/O manager, deferred
I/O manager, inbound I/O manager).

We should have spent more time keeping the data dictionary
entries up to date. All through the project, the lack of atten-
tion paid to data definitions was a major failing. The data
needs to be defined as the diagrams and process specifica-
tions are created. Data dictionary entries that were related to
data structures in the original driver were easy. However, we
did not always type in the complete definitions. We did not
document new data dictionary entries rigorously and this



FIOM_SC;3
FIOM_SC

FIOM_main

FIOM_handle_
terminal_regs

UT_free_
semaphores

UT_get_s1 UT_get_s2

TP_setup_t_
write_info

replies

FIOM_
logical_
level

v

weakened the entire data dictionary. We would have also
planned time for the internal specification, its inspections,
and the rework in the schedule.

Structured Design Overview

Design is the process of transforming the specification of
what must be done into the plan of how it will be done.
Classical design produces a narrative document with some
graphics. It starts with the procedural characteristics. Infor-
mation is often repeated throughout the design document,
and the document is generally not specific enough. This
results in some design improvisation during implementation.

Structured design introduces structure and graphics into the
design process to cope with the largeness of the system. The
goal of structured design is a highly maintainable, compre-
hensible, and easily tested top-down design. The system is
partitioned into components which interact to achieve the
functionality of the system.

To create the structured design, the data flow diagram pro-
cesses are grouped into processes that deal with inputs, deal
with outputs, transform inputs into outputs, or handle trans-
actions between inputs and outputs. Modules are then
created from these groups. Evaluation and refinement tech-
niques—called cohesion, coupling, and packaging— com-
plete the building of the documents. The structure chart,
design dictionary, and module specifications are the docu-
ments produced through this process. A structure chart
shows the basic components (modules) and their interfaces
in a top-down graphical manner. The design dictionary de-
fines the interfaces. It uses similar language to the data dic-
tionary of structured analysis. The module specifications
define the procedural part of the design and the sequence of
interactions. Each module specification describes what part
of the specification is being satisfied, what the module needs
to communicate, and how it performs the function. A mod-
ule specification is written in structured English, as a deci-
sion tree or table, or as a state transition diagram.

FIOM_route_

FIOM_handle_
printer_reqgs

FIOM_start_
printer_
requests

TP_printer_
status

TP_setup_p_w
rite_info .
= Fig. 9. FIOM structure chart.

Fig. 9 shows the first structure chart for the fast I/O manager.
There are a main module, some utility modules (e.g.,
UT_get_sl), and device-specific modules (e.g., FIOM_handle_
terminal_regs) which eventually led to the FIOM_logical_level
module. Fig. 10 is the module specification for the fast I/O
manager module, FIOM. It shows the sequence in which the
other modules are called. Design dictionary entries look sim-
ilar to data dictionary entries.

The Project and Structured Design

Once we had finished the internal specification, it was un-
clear how to derive the structured design from it. We decided
on the following approach. Each structured analysis process
was turned into a module. A hierarchical structure was de-
veloped for each level by “promoting a boss” or “hiring a
boss” module when necessary. Comparing the fast [/O man-
ager data flow diagram (Fig. 8) with the fast I/O manager
structure chart (Fig. 9), one can see that the FIOM_main mod-
ule is “hired as a boss” (created) to handle semaphores and
to call the FIOM_handle_terminal_regs and FIOM_handle_printer_regs
modules.t

When the rough drafts of the structure charts were ready,
they were entered into the Teamwork tool. The team then
determined what each module does and knows. The next
step was to walk through the design and be sure it works.
This involved tracing each I/O through the design to be sure

T Note: Some of the process names are capitalized or spelled differently in Figs. 8, 9, 10, and 11
and in the text of this paper. Some names did change between the structured analysis docu-
ment and the structured design document. In the module specification, Fig. 10, the engineer
chose to capitalize the function codes, request types, and procedures called. In Fig. 11, the
names are capitalized because the coding convention that was followed capitalized procedure
calls. The MPE/iX operating system is case insensitive, so the differences are insignificant.
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NAME:
FIOM_main;2

TITLE:
FIOM_main

PARAMETERS:
SM_CB
SM_arg_list
return_status

LOCALS:
request
status

GLOBALS:
BODY:

Calling parms:

SM_CB — pointer to SM control block
SM_arg_list — pointer to storage manager arguments

TIO_CB := SM_CB~.fwrt_cb; *used to be fast write control block *
case SM_arg_list*.sm_generic_parms.func_code of

SM_READ_FN:
request := READ_REQ;

SM_WRITE_FN:
request := WRITE_REQ;

SM_CONTROL_FN:
if (SM_arg_list*.sm_control_parms_t.* terminal control * <> TC_QUIESCE_|O)
request := TC_REQ;
else
request := QIO_REQ;

SM_DEVCONTROL_FN:
request := TC_REQ;

end;

*since this is the FIOM, and FIOM only handles waited I/O, always block *
* if necessary to get semaphores. *

status := UT_GET_S1 (FIOM, TRUE);
if (status <> TRUE)
*error, log and exit *;

status := UT_GET_S2 (FIOM, TRUE);
if (status <> TRUE)
* error, log and exit *;

if (TIO_CB”.device_type = * terminal *)

status := FIOM_HANDLE_TERMINAL_REQS (request, SM_arg_list);
else

status := FIOM_HANDLE_PRINTER_REQS (request, SM_arg_list);

return_status := MAP_TO_OS_STATUS (status);

UT_FREE_SEMAPHORES;

Fig. 10. FIoM module specification.

that the right information was available to the modules, and
that the modules were doing the right things. During the
entire process, modules were collapsed when it was reason-
able. We did not do much evaluation of the interfaces (data
coupling or cohesion) because of a lack of time. The internal
design document contained only Teamwork structure charts
and module specifications.

After the internal design was inspected and the rework com-
pleted, we worked on defining the procedure declarations,
data structures, software configuration (file structure), and
coding standards. The module specifications were the basis
for the Pascal procedures. Coding was mainly a matter of
converting pseudocode to Pascal. Fig. 11 is the outer block
of the fast I/O manager module. Comparing this to the fast
I/O manager module specification, Fig. 10, one can see how
closely related they are. The code adds more detail to the
module specification framework. (Fig. 10 also illustrates a
problem we had with module specifications: many of them
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begin {tio_fiom}

try
begin { Try section }

tio_cb := tio_ch_ptr_type( fiom_cb_ptr);

I_index :=0;

[

U

{The FIOM only handles blocked 10, always block
{if necessary to obtain semaphores

{.

U
if (CUT_GET_S1 (tio_cb, Fiom) ) then
if (CUT_GET_S2 (tio_cb, Fiom) ) then

if (not (tio_cb”.device_type.printer) ) then
{terminal }
status := FIOM_HANDLE_TERMINAL_REQUESTS

(sm_arg_list_ptr_t(arg_list))
else
{printer }
status := FIOM_HANDLE_PRINTER_REQUESTS
( psm_parm_ptr_t(arg_list))
else

begin

{**** LOG S2 error ****}

status := Bad_status;
|_tio_status.int_status.status_code := Internal_err;
|_tio_status.int_status.layer := Main_layer;
|_tio_status.int_status.proc_number := Pn_tio_fiom;
|_tio_status.int_status.location := 0;
|_tio_status.int_status.llio_flag := False;
|_tio_status.ext_status_hpe := status;

CUT_LOGMSG ( tio_cb,

|_tio_status,
Main_layer,
Fiom
)
end
else
begin

status := Bad_status;

{**** LOG S1 error ****}
|_tio_status.int_status.status_code := Internal_err;
|_tio_status.int_status.layer := Main_layer;
|_tio_status.int_status.proc_number := Pn_tio_fiom;
|_tio_status.int_status.location :=1;
|_tio_status.int_status.llio_flag := False;
|_tio_status.ext_status_hpe := status;

CUT_LOGMSG ( tio_ch,
|_tio_status,
Main_layer,
Fiom
)

end;
CUT_FREE_S2 (tio_ch);
CUT_FREE_S1 (tio_ch);
end; {Try section }

recover
begin { Recover section }

case ESCAPECODE of
0:;
otherwise
begin
|_tio_status.int_status.status_code := External_err;
|_tio_status.int_status.layer := Main_layer;
|_tio_status.int_status.proc_number := Pn_tio_fiom;
|_tio_status.int_status.location :=2;
|_tio_status.int_status.llio_flag := False;
|_tio_status.ext_status_hpe := hpe_status(ESCAPECODE);

CUT_LOGMSG ( tio_ch,

|_tio_status,
Main_layer,
Fiom
)
end;
end;

end; {Recover section}
end; {tio_fiom}

Fig. 11. FIoM code.



were too code-like. The case statement is an unnecessary
level of detail, and is actually not carried through into the
code since the arg_list is passed to the HANDLE procedures).
Analysis of the code shows a 33% reduction in code size
compared to the original driver. The reduction comes from
the reuse of procedures as a result of structured design, and
from a structure that allows common routines to be shared
between the DIOM, FIOM, and 1I0M modules instead of requir-
ing one copy per module. In the original driver, there was a
logical device manager for terminals and one for serial print-
ers. In the redesigned driver, the fast I/O manager and def-
erred I/O manager are able to handle both terminals and
serial printers.

Structured Design Recommendations

In general, not enough attention was paid to defining design
dictionary entries or data structures. Structured design added
the next level of detail to the design from the specification.
It was easy to develop the design from the specification
once we had our approach. We occasionally created module
specifications that are too much like code. Module specifica-
tions are not meant to handle the small details that are best
suited to coding, but to define how the function is per-
formed. If too much attention is paid to code-like details less
is paid to how the specification is to be implemented.

If we had to do it all over again, we would have paid more
attention to the interfaces and better defined the data pass-
ing between modules. Since we were using a lot of existing
interfaces, we did not put the time into the data or design
dictionaries. This meant that the data elements were poorly
defined, since we tended to assume that everyone knew
how the data was defined. We would also have developed a
module specification standard to create consistency and
avoid variations in the degree of code-like English in the
internal design.

Inspections

The internal specification required some basic structured
analysis training for the inspections. This was because of the
graphical nature of the diagrams and the decision structures.
The internal design (structured design document) was easier
to understand since it consisted of structure charts, pseudo-
code, and data descriptions. Inspections were done by a
depth walk through the processes and hence concentrated
on architectural levels as opposed to interfaces between
levels. The inspections did an excellent job of checking for
functionality and design flaws, but were weak in the area of
interface checking.

The original driver internal design documents were narrative
with some state transition diagrams. They were much shorter
than the internal specification and internal design created
with structured methods. Past reviews of project documenta-
tion (external specification, internal specification, internal
design) took place at one 2-to-4-hour meeting per docu-
ment. Since the structured documents were larger and con-
tained more detail, it took about 300 engineer-hours to in-
spect or review them. The participants felt that the reviews
of the internal specification and internal design (structured

analysis and structured design documents) were very valu-

able. The material was much easier to inspect for complete-
ness, correctness, and functionality than the narrative inter-
nal specification and internal design documents.

Schedule

There is a concern that using structured analysis and struc-
tured design has a large impact on the schedule. The nega-
tive impact of structured analysis and structured design on
our schedule consisted of training time (two weeks), time
spent becoming familiar with structured analysis (one month
of intermittent structured analysis), and longer inspections. A
positive result of using structured analysis and structured
design is that each step is a progression from the last. Each
document is built on the previous document, unlike the clas-
sical design in which each document is not so closely tied to
earlier ones. The effort required at each phase was less than
the one before, and was mainly directed at adding more
details. The positive impact of structured analysis and struc-
tured design on the schedule was shorter test cycles. Nonre-
gression tests were passed ahead of schedule.

Results

The redesign project improved block mode performance and
achieved a greater than 30% reduction in the terminal driver
path length. The code passed all functional tests including
24-hour and 72-hour nonregression tests. 75% of the testing
errors were coding errors. The majority of the remaining
defects were found in areas that were known to be weak
from the design and inspection phases. The engineers val-
ued learning structured methods and tools both for the qual-
ity and completeness of the design and the acquired skill set.
The project team believes that the design of the new HP
3000 MPE/iX terminal and serial printer driver would not

have been accomplished in the same amount of time with
the same amount of thoroughness by the traditional design
techniques.
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