An Advanced Scientific Graphing

Calculator

The HP 48G/GX combines an easy-to-learn graphical user interface with
advanced mathematics and engineering functionality, expanded memory

capability, and seven new plot types.

by Diana K. Byrne, Charles M. Patton, David Arnett, Ted W. Beers, and Paul J. McClellan

The HP 48G/GX, Fig. 1, is a state-of-the-art graphing calcula-
tor that combines an easy-to-learn graphical user interface
with advanced mathematics and engineering functionality. It
is a continuation of the HP 28S! and HP 48S/SX?2 series of
calculators, which are designed for high power, extendability,
and customizability.

The HP 48G/GX includes improvements to address the
needs of both novice and advanced users of scientific and
graphing calculators. For the new user or the user who does
not use certain functionality very often, the calculator has a
dialog-box-style, fill-in-the-blanks user interface.

Fig. 1. HP 48GX scientific graphing calculator.
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For the user who needs to do advanced problem solving,
the calculator offers the following features:

Differential equation solvers

Polynomial root finder

Financial problem solver

Library of engineering equations and constants

Fourier transforms

Matrix manipulations

Linear algebra operations.

For the user who needs more memory and extendability, the
GX version has 128K bytes of built-in RAM, compared to
32K bytes in the S and G versions. The only other difference
between the G and the GX is the two memory card slots in
the HP 48GX. The second memory card slot accepts up to
4M bytes of RAM or ROM.

The graphing capability has been expanded with the addition
of seven new plot types, for a total of fifteen. The HP
48S/SX has function, polar, parametric, conic, truth, histo-
gram, bar, and scatter plots and the HP 48G/GX has these
plus differential equation, slope field, wireframe, parametric
surface, grid map, pseudocontour, and y-slice cross-section
plots.

The HP 48S/SX functionality has been retained in the HP
48G/GX. The new calculator has twice the ROM and retains
much of the original code. The HP 48S/SX and HP 48G/GX
both have the following features:2

Unit management

MatrixWriter

EquationWriter

HP Solve numeric solver

RPN-style stack calculation

Symbolic mathematics

Time and alarms

Statistics operations

Variables and directories for data storage

User-definable keyboard and custom menus

RPL programming language

Two-way infrared communications link

RS-232 serial cable connector.

Education Trends

The creation of the HP 48G/GX can be traced to the Ameri-
can Mathematical Society (AMS) meeting in January 1992. We
had been closely following the trend of using technology in
the mathematics classroom because our software team



includes former mathematics educators and a calculus text-
book author, and because we visit mathematics, engineering,
and education conferences and talk to educators both to
promote existing products and to find out what teachers and
students would like to see in future products.

We had watched the interest in graphing calculators grow
steadily each year, and had been involved in workshops for
teachers using technology in the classroom through an HP
grants program. Although the HP 48S/SX was becoming a
standard for engineering students and professional engi-
neers, it was just the first step in meeting the needs of the
education community, and we continued to hear that it was
too difficult to use and too expensive for classroom use. By
January 1992, when we talked to educators attending the
AMS meeting about their needs and about the calculators
that they were considering for use in the classroom, it be-
came obvious that we needed to have a new product for the
education market no later than the 1993 back-to-school pe-
riod. This resulted in the formation of an education advisory
committee, a group of six mathematics professors who
would help us design the calculator to fit the needs of the
education community, and then give us feedback on our
implementation.

Design Objectives

Our number one objective for the new calculator was ease
of learning. The users of the HP 48S/SX told us that they
appreciated its power, but its complexity made it difficult for
both novice users and experienced users. The novices ten-
ded to be intimidated by the extensive owner’s manual and
the difficulty of mastering so many new operations, while
the experienced users had a hard time remembering how to
use some operations that they did not use frequently.

Creating a state-of-the art graphing calculator was our second

objective. We needed to add some graphing capabilities, such
as tracing along a graph and shading between graphs, just to
maintain parity with other graphing calculators, but we also

wanted to go far beyond the competition with features such

as 3D graphing and animation.

Our third objective was to enhance the high-end mathematics
capability of the HP 48S/SX with the addition of features such
as differential equation solving, polynomial root finding,
more matrix operations, and Fourier transforms, thereby
strengthening our position as the most powerful technical
calculator in the world.

By offering two models, the HP 48G and the HP 48GX, we
intended to please customers at both ends of the education
spectrum. The HP 48G has a list price that represents a sub-
stantial decrease from the list price of the HP 48SX or HP
48S. This makes the HP 48G competitive with other graphing
calculators and makes it appealing even at the high school
level. The HP 48GX has more appeal for college students,
with four times as much built-in memory and two plug-in
card ports that are expandable to 4M bytes of memory.

Operating System

A calculator or computer operating system is primarily a set
of conventions for memory organization, data structures, and
resource allocation together with a set of software tools to
aid in performing operations in accordance with those con-
ventions. In contrast, an application is software built using

the resources and conventions of the operating system. As
new hardware resources become necessary and available,
the operating system must grow to manage those resources
effectively and as transparently as possible to the applica-
tions built on the system.

The operating system (and system programming language)
in the HP 48G/GX is the RPL operating system, first used in
the HP 18C and HP 28C and subsequently in a number of
other machines including the HP 28S, HP 48S/SX, and now,
with extensions, in the HP 48G/GX.

HP 48G/GX Fundamentals

The key concept underlying the operation of the calculator
is the idea of objects on the stack. A stack is a data structure
that is similar to a stack of cafeteria trays. The clean trays are
added to the top of the stack, and as trays are needed, they
are removed from the top of the stack. This type of last in,
first out ordering characterizes the HP 48G/GX stack. All
operations take their arguments (if any) from the stack and
return their results (if any) to the stack.

There is only one data stack in the HP 48G/GX. This resource
is shared by the user and the system RPL programmer, who
must take great care to make sure that any objects that be-
long to the user are preserved through the operation of sys-
tem RPL programs. For example, the user may have a few
numbers sitting on the stack, then decide to plot the graph
of a function. The system RPL program that runs when the
DRAW key is pressed does many operations that require the
use of the stack, such as recalling the plotting parameters,
checking that they are valid, calculating the range over which
to plot, evaluating the user’s function, and converting the
function values to pixel coordinates. After the graph is com-
plete (or if the drawing of the graph is interrupted by the
user), when the user sees the stack again, the same numbers
that were there to begin with should not have been disturbed.

Instead of trays, users may collect various types of numeric,
symbolic, and graphic objects on the HP 48G/GX stack. The
types of objects available in the HP 48G/GX include real and
complex numbers, real and complex arrays, binary integers,
names, characters, strings, tagged objets, algebraic objects,
unit objects, and graphic objects. There are also backup ob-
jects, library objects, directories, programs, and lists. (HP 48
object types are discussed in more detail in reference 2.)

In a key-per-function calculator, there is a single key that the
user needs to press to get the machine to perform any opera-
tion, such as cosine. The HP 48G/GX has many more opera-
tions than the 49 keys on the keyboard, so there needs to be
a way to access all the functionality without assigning one
operation to each key on the keyboard. This is accomplished
through the use of menus and softkeys. The top row of keys
on the keyboard do not have anything printed on them be-
cause they correspond to menu labels that appear along the
bottom of the screen. These keys are called softkeys, and
their meaning changes whenever the corresponding labels
on the screen are changed by the software.

HP 48S/SX Memory Controller Configurations

We will now discuss the memory controller configurations
used in the HP 48S/SX and how these are used in imple-
menting the various types of expanded address modes de-
veloped for these products. The next section outlines the
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MMIO
System RAM 32K

Port 1 128K

System ROM 224K CoveggdKROM Unused Controller Address Space

Port 2 128K
Extra 2K

Higher Priority

Fig. 2. Standard memory control-
ler configuration for the HP
48S/SX calculator. Memory sizes

Larger Addresses

differences in configuration between the HP 48S/SX and the
HP 48G/GX and discusses how these differences are used to
extend and refine the expanded address technology to pro-
vide access to a total of 4.75M bytes of code and data as
transparently as possible.

The CPU bus architecture first developed for the HP 71 and
used in all HP calculators since that time has several useful
features. One of the nicest is its address configuration capa-
bilities. All chips attached to the bus are required to be able
to change, on command of the bus, the range of addresses
that evoke a response from the chips. Such a system elimi-
nates, once and for all, the inconvenience and headache of
configuring jumper switches on cards designed to plug into
the machine. For a consumer product like a calculator this is
not only a nicety, it is a necessity.

In the early days of the architecture (HP 71 to HP 28C), the
CPU bus lines were actually routed around the circuit board
and any RAM, ROM, or memory mapped I/O that was at-
tached to the bus had to be custom-made with the bus inter-
face attached. This had the advantage of allowing an arbitrary
number of parts to be added to the system with assurance
that the system would be capable of handling all of them in
one way or another. It had the grave disadvantage of putting
a price premium on such essential items as ROM and RAM.

In the second-generation CPU chip, a fixed number of mem-
ory controllers were included onboard the CPU. The CPU
bus was then, for all practical purposes, completely hidden
within the CPU itself. The combination of external standard

MMIO

System RAM (Shrunken)

Covered Code to be
Executed In-Place

Covered ROM 32K

System ROM

are in bytes.

RAM or ROM together with one of the internal memory
controllers was then equivalent (so far as the CPU bus is
concerned) to a standard bus device.

In the standard device implementations, the size of the device
(that is, the address space occupied by the device) is de-
signed into the device. In the second-generation chip, the size
of the controllers was mask programmed at the time of man-
ufacture since we knew exactly what size each controlled
device would be.

With the advent of plug-ins for the HP 48S/SX, the configu-
ration capabilities of the memory controllers had to be ex-
panded to include varying the apparent size of the memory
controller to conform with the device being plugged in. This
is one of the many advanced features in the third-generation,
HP 48S/SX implementation of the architecture. This resizing
feature, in addition to allowing plug-ins of various sizes, also
presented the opportunity to explore expanded address
modes, which we have come to call the “covered” technol-
ogy, for reasons that will be apparent shortly.

The third-generation CPU chip has six memory controllers.
In the HP 48SX, these are allocated to memory mapped I/0,
system RAM, port 1, port 2, and system ROM, and there is
one extra controller. Their configuration in the usual state is
shown in Fig. 2. The memory controllers are shown with
their sizes and locations in the address space (00000h to
FFFFFh). They are also pictured as having a vertical location
in “priority space.” In the CPU bus definition the devices are
chained, with the result that devices closest to the CPU on

Port 1 128K ‘

Higher Priority

Fig. 3. Execute-in-place configu-
ration for HP 48S/SX covered

Larger Addresses
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Mailbox in _/
System RAM
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System ROM

Covered ROM 32K

Port 1 (128K)

Higher Priority

Fig. 4. Copy-to-mailbox configu-
ration for HP 48S/SX covered

Larger Addresses

the chain have the first opportunity to respond to bus re-
quests. In consequence, if two devices are configured with
overlapping address ranges, the one closer to the CPU on
the chain effectively hides the more distant one. In Figs. 2 to
12, higher priority can be interpreted as “closer to the CPU”
or “hides those below.”

As shown in Fig. 2, the memory controller for system RAM
hides the section of ROM shown as covered. This is the
reason for the name “covered” technology.

Fig. 3 shows more detail of the covered ROM and the first
way in which it is used. In one section of the covered ROM
there is assembly language code (mostly math routines) that
requires no RAM resources outside the CPU for execution.
This code is executed in-place in the covered ROM by
shrinking and/or moving the memory controller for system
RAM so that the relevant section of code is temporarily un-
covered. When the routine finishes execution, system RAM is
returned to its normal configuration.

A second set of routines, all of which only need access to a
fixed set of locations within system RAM, can execute with
system RAM in any one of 16 locations, as long as they
themselves are not currently covered by system RAM.

Fig. 4 shows a second way in which the covered ROM is
used. In this case, code and data (mostly data) are copied
from covered ROM to a mailbox at a fixed location in system
RAM. After the copy is completed, system RAM is returned

MMIO

data.

to its normal configuration and the code and data are avail-
able to the rest of the system. Coders using this data must
remain aware that it is volatile and can be destroyed by an-
other fetch of data from covered ROM. In this sense, this
method is not transparent.

Another way in which covered ROM is used is shown in
Fig. 5. It is as transparent as the execute-in-place method but
entails fewer restrictions on the code and data that can be
included. In the HP 48SX code, this system is usually tied to
the execution of ROMPTRs. Recall that ROMPTRs are RPL
objects that substitute for hard addresses of objects whose
precise location is not known in advance (and in fact might
not even be present.) They are midway between hard ad-
dresses that only change at compile/link time and identifiers
whose corresponding objects may move between subsequent
calls at run time.

If, during the conversion of a ROMPTR to an address, it is
determined that the corresponding object lives in covered
ROM, the object is copied from covered ROM, through the
mailbox, to the TEMPOB (temporary object) area. The address
of its new location in the TEMPOB area is then returned. Fig.
6 shows a comparison of a named ROM word (keyword or
command) as it would exist in covered ROM and as copied
to the TEMPOB area. Although we'll refer back to Fig. 6 later,
for now notice that in addition to the object itself, an addi-
tional piece is added to the image in the TEMPOB area. This
piece is a ROMPTR preceding the object itself. This allows

/_\ TEMPOB Area
. et |

Mailbox in _/

System RAM
System RAM

System ROM

Covered ROM 32K

Port 1 (128K)

Higher Priority

Covered ROM Words to Copy
to the TEMPOB Area

Fig. 5. Copy-to-TEMPOB configura-
tion for HP 48S/SX covered ROM

Larger Addresses

words.
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Mark and Link
ROMPTR { DOROMP

Preceding
Object ROMPTR Body

Property List Flags
ROMPTR Body

ROM Word Body ROM Word Body
Property List Item
Property List Item
Property List Item
Property List Item

Property List Item

In ROM In TEMPOB

Fig. 6. Comparing the structure of a ROM word as resident in ROM
and when copied to TEMPOB using covered technology.

the routine converting the ROMPTR to an address to check
whether the object in question is a copy of one residing
elsewhere. This method of covered ROM access, which we
call “covered ROM word access,” will be especially relevant
to our discussion of the HP 48G/GX.

Preexisting design elements of the RPL system contributed
greatly to the practicality and transparency of covered ROM
word access, including:

Encapsulation of code and data into RPL objects that are of
determinable size

Indifference of RPL object execution to object location in
RAM or ROM

Equivalence of direct and indirect execution of RPL objects,
which allows (noncircular) structures to be stored and used
in the same format.

HP 48G/GX Memory Controller Configurations

The HP 48GX has a number of important features including:
Up to 128K bytes of built-in system RAM

One plug-in port electrically equivalent to the HP 48SX ports
Access to 512K bytes of system ROM

Access to 4M bytes of RAM or ROM at a second port using
industry-standard parts.

MMIO

System RAM (128K)

These features required increasing the usable address space
from 0.5M bytes to 4.75M bytes, an 850% increase over pre-
vious machines.

While the HP 48G/GX has CPU functionally equivalent to
the third-generation CPU discussed above and thus has six
memory controllers, these controllers are configured and
used differently. Fig. 7 shows the standard HP 48GX config-
uration. The controller previously allocated to port 2 is now
used as a bank switch control, and the extra controller is
now allocated to port 2. Furthermore, there are now as
many as 34 layers over the last 128K bytes of address space.

Eliminated in this configuration is the HP 48S/SX covered
ROM. This means that all of the functionality included in the
HP 48S/SX can be accessed more quickly. Two things that are
visibly enhanced are plotting (since the math routines are not
covered) and screen update (since the font bitmaps are not
covered.) Since there are a great many more covered places
to access, however, there are many more “temporary” con-
figurations to keep track of while working with the covered
data.

To simplify the system, we use only a single covered tech-
nique, namely, covered ROM word access, with appropriate
modifications. Without this simplification, the number of
access method and configuration combinations would be
unmanageable. Moreover, this is the only feasible method of
covered access to code written for the HP 48S/SX or not
expressly written for the the new configuration.

Fig. 8 shows the configuration while copying an object from
a bank of port 2 to the TEMPOB area. Port 1 is unconfigured.
In the unconfigured state, the controller responds to only a
handful of bus commands and acts as if it weren’t there for
data access.

Fig. 9 shows the configuration while copying an object from
the second half of the upper system ROM. In this case, both
ports are unconfigured.

Fig. 10 shows the configuration while copying an object from
the first half of the upper system ROM. Since a controller
move or resize operation takes many more CPU resources
than configure or unconfigure, it is often necessary to copy
objects from this section, through a mailbox, and then into
the TEMPOB area.

Port 1 (128K)
Bank Switch
Control @y *E‘
EEE—— O
—— =
——— Potz ——— [
—— 4MBytesin =y
128K Banks I
—
System ROM I (256K) System ROM II (256K)
Fig. 7. HP 48GX standard
Higher Addresses memory controller configuration.
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System RAM (128K
e ( ) /Unconfigured
Port 1 (128K)
Bank Switch
Control @y ‘E“
2
a
&
[=2]
128K Banks T
I
——————————
System ROM | (256K) System ROM Il (256K) .
Fig. 8. HP 48GX configuration
for copying an object from a
Higher Addresses bank of port 2 to TEMPOB.
Ports1& 2
MMIO Unconfigured
System RAM (128K)
Port 1 (128K)
Bank Switch
Control @ ?
2
Port 2 e
4M Bytes in 5
128K Banks I
System ROM | (256K) System ROM Il (256K) .
Fig. 9. HP 48GX configuration
for copying an object to TEMPOB
Higher Addresses from the upper half of system
ROM.
Fig. 11 shows the configuration when it is determined that between the two machines. In fact, the code can be identical
nothing is plugged in at all. In this case, the only covered in this case. Second, it gains the advantage of faster access

access is to the first half of the upper system ROM. Again, it to the base functionality, providing a more responsive
is likely to be necessary to copy this material through a mail-  implementation.
box. Otherwise, all the ROM words can be executed in-place.

Fig. 12 shows the standard HP 48G configuration, which is Hardware Design
identical to Fig. 11 except for the smaller size of system
RAM. While it is not strictly necessary to use this configura-
tion, which matches one of the HP 48GX configurations,
there are advantages. First, it allows maximal code sharing

The heart of the HP 48G/GX is a fourth-generation CPU
chip. This custom ASIC is built around the original HP 71
processor, and its development was key to the creation of

MMIO
System RAM (128K)
Port 1 (128K)
Bank Switch
Control (2K) ?
— S
I— =
— -
—— 4MBytesin 5
128K Banks T
—————————
System ROM | (256K) System ROM Il (256K) .
Fig. 10. HP 48GX configuration
for copying an object to TEMPOB
Higher Addresses through a mailbox.
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Fig. 11. HP 48GX all-ports-empty
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Port2 o
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System ROM | (256K) System ROM Il (256K)
Higher Addresses

the HP 48G/GX. This chip has four advantages over the
third-generation chip used in the HP 48S/SX. First, it is pro-
duced using a different CMOS process, allowing better stabil-
ity with onboard voltage regulation circuitry. Second, these
improved voltage characteristics and several low-level opti-
mizations allow the new CPU to operate at twice the speed
of its predecessor. This speed increase gives it a 4-MHz bus
rate. Third, the new CPU is packaged in a 160-pin quad flat-
pack, improving the manufacturability of the HP 48G/GX.
Fourth, with all these improvements, the final cost is lower,
increasing the budget for other hardware improvements to
the calculator.

The faster processing speed of the HP 48G/GX CPU gave
the software team incentive to improve the user interface,
implementing graphical routines that would not have been
acceptable at the slower processing rate. This added func-
tionality required an increase in data storage space, so we
boosted the size of ROM and RAM. We also decided to add
the facilities to bank-switch a data card plugged into card
port two.

The HP 48G/GX circuitry, with its additional components,
had to fit in the same physical space as in the HP 48SX. The
product plan and schedule did not allow changes to produc-
tion tooling or plastic parts except for those that were abso-
lutely necessary. At times we felt like poets trying to write
crossword puzzles. The HP 48SX circuit board design was
optimized such that it did not leave us much free space.

MMIO

Port 1
(Shrunken)

System RAM (32K)

configuration.

These space constraints affected many of the HP 48G/GX
hardware design choices.

The RAM increased from 32K bytes in the HP 48SX to 128K
bytes in the HP 48GX, while the HP 48G retained the origi-
nal 32K-byte chip. This difference between the G and the
GX offers two advantages. First, it provides more differenti-
ation between the functions and cost of the G and the GX,
increasing the product family’s market appeal. Second, the
difference in RAM size provides a way for the calculator to
know whether it is a G or a GX. If the calculator scans the
RAM and finds only 32K bytes, then there will never be a
plug-in data card installed. With this information the covered
memory options become much simpler. The RAM memory
size becomes an internal product type identifier, and several
software routines are optimized for faster performance on
the HP 48G.

ROM Changes

The HP 48G and GX share a common ROM code set. They
also share a common circuit board. While this simplifies doc-
umentation, manufacturing, and stock control, it also compli-
cates some areas. The HP 48GX RAM chip is wider and
longer than the chip used in the HP 48G: the 32K RAM is in
a 28-pin small-outline package (SOP), and the 128K device is
a 32-pin SOP. Both conform to the JEDEC pinout standard. A
128K device was chosen that has an extra chip select line at
pin 30. This chip select is tied high, allowing pins 1 through

Higher Priority

Fig. 12. HP 48G standard
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28 of the smaller RAM to overlay pins 3 through 30 of the
larger device. The extra chip select of the HP 48GX RAM
matches the Vqq line of the HP 48G RAM chip, and all of the
other lines are pinout-compatible.

The difference in physical package width also posed a
problem. The foil patterns on the circuit board had to be
modified to accept RAM chips with different lead spacings
across the package. The immediate response was simply to
stretch the oval-shaped patterns. However, this resulted in
the foil extending well under the body of the 128K chip, a
situation that could have led to solder bridging where the
solder paste contacted the part body. This is avoided by using
two different solder stencils on the manufacturing line. A
paste of solder is laid on the blank circuit board before parts
are loaded onto the board. A metal stencil defines the pattern
of the solder paste, just as a silk screen controls the pattern
of ink on a shirt. By using a different stencil pattern for the
G and GX circuit boards, we control the original location of
the solder paste and keep it out from under the 128K-byte
RAM body. Once all the components are loaded onto the
circuit board and the solder is heated to a molten state, a
danger might again exist for the solder to flow under the
part body. Fortunately, the nature of the mechanical contact
between the RAM lead and the circuit board foil tends to
cause the solder to pool or wick to the lead rather than
spreading across the elongated foil pad.

The packaging of the ROM chip was also changed between
the HP 48SX and the HP 48GX. The SX used a square 52-pin
quad flatpack for its 256K bytes of program data. The code
size of the HP 48GX is doubled to 512K bytes. Its package is
a 32-pin SOP like the 128K-byte RAM chip. Their common
package configuration allowed us to conserve space in the
placement of the two chips and in the routing of signal wires
between them.

Use of a standard SOP ROM chip also allowed us to use
one-time programmable (OTP) ROMs in prototype calcula-
tors. An OTP uses the same semiconductor core as a UV-
erasable EPROM. To get the semiconductor chip into an
SOP, however, the manufacturer omits the familiar glass win-
dow in the chip, covering the device in opaque plastic. The
resulting ROM is no longer erasable.

Typically, a product schedule requires months between code
release and the start of production so that ROMs can be built
with the software code built-in. The use of OTPs on this
project cut the required time from months to days. For one
prototype run, the time between code availability and prod-
uct build was only a few hours.

The HP 48G/GX CPU multiplexes the highest address bit, A18,
with an additional chip enable line, CE3. The original idea
was to allow future expansion of the HP 48 family, either to
use a larger ROM chip or to include an additional memory
mapped device. By the time the HP 48G/GX design was
complete, we had decided to do both. We doubled ROM to
219 bytes, and we added bank switching to card port 2. Two
small HCMOS chips were added to the board to demultiplex
these signals. The two chips are a quad NAND chip and a hex
D flip-flop, similar to the standard TTL devices. The multi-
plexing is accomplished by simply toggling a control bit in-
side the HP 48G/GX CPU. To demultiplex the A18 and CE3
signals, we developed a protocol for mirroring the state of
the internal bit to one of the external D flip-flops. The NAND

gates handle signal demultiplexing, and the remaining five
flip-flops form a register for the card port 2 bank address.

Other Hardware Changes

The card ports of the HP 48SX were designed for Epson
memory cards. Several unused lines were adapted to provide
external video signals to drive an enlarged display for class-
room use. On the HP 48GX, the video lines are retained
only on card port 1. On card port 2, the video lines are re-
placed by five additional address lines. The system software
allows the card in port 2 to be subdivided into 128K-byte
sections, with each section treated as a virtual plug-in card.
Five bank select address lines permit up to 32 virtual plug-
ins in card port 2, yielding a maximum card size of 4M bytes
in the plug-in port. With the ROM, RAM, and plug-in op-
tions, an HP 48GX can access 4,980,736 bytes of onboard
data.

Since the inception of the HP 48 family of calculators, liquid
crystal display technology has progressed significantly. The
display in the HP 48G/GX provides improved visibility by
improvements in pixel contrast. The display is thinner than
before. This change in glass thickness reduces the parallax
between the pixel within the display and its shadow on the
rear face of the display. In the HP 48SX, the pixel contrast
was lower and the shadow was not dark enough to cause
problems, but in testing the new HP 48G/GX display under
various light conditions, we found that shadow effects made
the display hard to read. With the thinner glass now used,
the pixel and its shadow appear as one image, and the
shadow now enhances the appearance of the pixel.

Changes to plastic parts were not permitted, except where
necessary. The back case of the HP 48G/GX required
changes. The changes were all accomplished by making
mold inserts. Where text on the mold needed changes or
additions, the affected area of the mold was milled away. A
piece of steel was placed into the hole to make a perfect fit,
and the face of this new piece was etched or inscribed with
the new textures and features. The new back case helps
identify the differences between card ports 1 and 2, updates
the copyright information, adds a mark indicating that the
HP 48G/GX complies with Mexico’s importation laws, and
adds an area for a customized nameplate. The customized
nameplate is a piece of metal with adhesive on one side.
The customer’s name can be engraved on the plate and at-
tached to an inset area of the back case. This is the same
nameplate used on HP’s palmtop computer family.

The result of these changes is a computer platform that is
more powerful than its predecessor, is well-suited to the
enhanced user interface developed by the software team, is
more versatile for both the user and the design engineer,
and is less expensive to produce. It started as a processor
upgrade and became a major product improvement.

User Interface

With ease of learning and ease of use the primary goals for
the new HP 48G/GX calculator, the user interface and many
built-in applications have been largely redesigned.

Input forms provide the common starting point for the
new and rewritten applications in the HP 48G/GX. Looking
much like dialog boxes in an Apple Macintosh or Microsoft”
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Fig. 13. A typical input form.

Windows PC, input forms provide a fill-in-the-blanks guide
to the input needed for a task, plus application-specific
menu keys for acting on that input.

For selecting an application in a particular topic and for
picking an input from among several choices we developed
choose boxes, a type of pop-up menu that suggests alterna-
tives and narrows the input focus.

We designed message boxes to make feedback to the user
more manageable within our increasingly crowded display
space. Message boxes appear on top of whatever the user is
working on and provide more flexibility for formatted mes-
sages and icons than the two-line, fixed-location error mes-
sages they replace. They also preserve the context that can
otherwise be lost when something surprising happens within
an application.

Input Forms

An input form provides both a means to enter data pertinent
to an application and operations that permit the user to direct
actions.

Visually, an input form consists of (see Fig. 13):

A title suggesting the form’s purpose

One or more fields, typically with explanatory labels, which
are used to gather and display user input

A help line that details the input expected in the selected
field

Menu keys that provide more options for working within or
exiting the input form.

Each input form field can be one of four types. Most input
forms, such as the Set Alarm and I/0 Transfer input forms, con-
tain several or all types of fields. Text fields are used to enter
arbitrary HP 48G/GX objects like real numbers and matrices;
the object types allowed are specific to each text field. In
Fig. 14, a text field is used to enter an alarm message in the
Set Alarm input form.

When a single choice among several is required, /ist fields
are used to eliminate invalid input and to help focus user
actions. To select an entry in a list field, a choose box is
displayed. In Fig. 15, a list field is used to specify the trans-
fer format in the I/0 Transfer input form.

Sometimes only a simple yes-no, do-or-don’t type of choice
is needed. For this we use check fields. Fig. 16 shows how
the overwrite (OVWR) field is used to specify whether or not
an existing variable should be overwritten.

Finally, when arbitrary input is possible but logical choices
are also available, combined text/list fields are employed. In
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Fig. 14. Using a text field in an input form.

the Transfer input form, the Name field is a combined field
that permits new names to be entered or the names of exist-
ing HP 48G/GX variables or PC files to be selected (see Fig.

17).

As the figures illustrate, each of the three base field types
has associated with it a dedicated menu key that triggers the
unique feature of that field type. This feature is an important
part of how we maintained a calculator key-per-function-
style interface within the constraints of a small display and
with no pointing device. In other graphical user interfaces,
visual elements such as list arrows are activated by mouse
clicks to elicit different behaviors from fields. In the HP
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Fig. 15. Using a list field in an input form.
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Fig. 16. Using a check field in an input form.

48G/GX, the user’s finger acts as the pointing device, trigger-
ing the desired behavior by pressing the appropriate action
button for each field. Consistent location of the three types
of action buttons helps the user navigate an input form
confidently.

Some input form menu keys perform application-specific
operations—for example, DRAW in Plotting. In the second row
of the input form menu are more advanced input form opera-
tions for resetting a field or the entire form, displaying the
object types allowed in a field, and temporarily accessing the
user stack to calculate or modify a field value.

Choose Boxes
Choose boxes are used to make a choice in an input form
list field. They are also used in most subject areas to choose
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Fig. 17. Using a combined text/list field in an input form.
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Fig. 18. A typical choose box.

a specific application from among several. Fig. 18 shows the
choose box that is displayed when the STAT key is pressed to
perform statistical calculations.

When circumstances require, choose boxes can include any
or all of several advanced features. The Memory Browser
application, for example, is actually a maximume-size choose
box embellished with a title, multichoice capability, and a
custom menu (see Fig. 19).

Message Boxes

Message boxes are used primarily for reporting errors that
require attention before proceeding. For example, if the user
attempts to enter a vector in the EXPR field of the Integrate
input form, a message box appears to inform the user of the
problem (see Fig. 20).

Some applications also use message boxes to give additional
information. For example, in the Solve Equation input form, the
user can press INFO any time after a solution has been found
to review the solution and determine how it was calculated
(see Fig. 21).

Input Form Implementation

For the HP 48S/SX, we developed an RPL tool called the
parameterized outer loop3 to speed development of new
interfaces such as the MatrixWriter by automating routine
key and error handling and display management. The input
forms in the new HP 48G/GX embrace this concept—in fact,
the input forms engine is a parameterized outer loop appli-
cation—and take it one step farther to automate routine mat-
ters of application input entry and selection of options. The
input forms engine brings a uniform interface to all new HP
48G/GX applications.

While narrowly focusing the task of application development
by managing command input tasks, the input forms engine
also leaves much room for the customization that helps opti-
mize the HP 48G/GX for ease of use. Since an important
measure of our progress towards our goals for the calculator
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Fig. 19. The Memory Browser: a complex choose box.
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Fig. 20. A typical message box.

was to be feedback from typical users throughout the devel-
opment cycle, we designed the input forms engine from the
ground up to be highly customizable. This was accom-
plished in a programmer-friendly manner by including over
fifty hooks into the input forms engine’s responses to exter-
nal and internal events. External events are triggered by us-
ers and include low-level events such as key presses and
high-level events such as completion of a field entry. Inter-
nal events are usually activated by external events, such as
formatting a completed field entry for proper display. A
single external event can trigger a half dozen or more inter-
nal events, all of which are customizable.

Input form applications can customize any or all form-level
events such as title display or field events such as displaying
a help line. Each field has a field procedure associated with
it, and the entire form has a form procedure associated with
it. Whenever an event occurs, the appropriate field or form
procedure is called with an identifying event number and
perhaps additional information. If the procedure does not
customize the event, it returns FALSE to the input forms en-
gine. If it does customize the event, the procedure performs
the custom behavior and returns TRUE. In this manner, every
event first queries the proper form or field procedure to
determine if custom behavior is needed, then handles the
event normally only if it isn’t customized. If a form or field
has no custom behavior, it specifies a default procedure that
quickly responds FALSE to all event queries.

The reason for a form procedure and multiple field proce-
dures is to spread the burden of customization throughout
the form. Since each field procedure only checks for the
events that pertain to it, and since the form procedure only
checks for form-level events, no single event processing is
slowed by a highly customized form that would otherwise
have to compare the event number against a lengthy list of
event and field combinations.

For the HP 48G/GX project we needed another layer of
regularity not enforced by the input forms engine. Because
we sought and reacted to usability feedback almost until the
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Fig. 21. The Solve Equation INFO message box.
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code was released to production, the user interface details
for each subject area were subject to constant change. It was
imperative, therefore, that we maintain a strict and formal
division between unchanging and well-understood tasks—
such as getting and saving problem domain information and
calculating results—and the user interface details that were
changing regularly. We developed a set of conventions that
were embodied in what we called translation files. We used
naming rules and constrained responsibilities to greatly miti-
gate the effects of user interface changes on the underlying
problem-solving functionality. For example, one RPL word in
the plotting translation file has the simple task of reading the
current horizontal plot range from calculator memory. Since
the word has no presumptions about how and when it will
be called, references to it could be (and often were)
changed around as the fields populating the plotting input
form were worked out.

Choose Box Implementation

The choose box engine is very much like the input forms
engine. For customization, the programmer can supply a
choose procedure that responds to 26 messages.

A feature of choose boxes that simplifies their use is the
option—heavily used by the built-in applications—of items
that encapsulate both display and evaluation data. For exam-
ple, when an angle measure—degrees, radians, or grads—is
to be chosen in certain input forms, the choose box engine
displays plain descriptions but returns an RPL program that
sets the selected angle measure. This circumvents the need
for branching according to the returned object and simplifies
the extension of choices.

Results: Benefits and Costs

Initial feedback from the educational advisory committee
and user reviews suggests that the use of input forms and
other graphical user interface elements has greatly improved
the ease of use of the HP 48G/GX over the HP 48S/SX.
However, the path we took to this accomplishment was
more challenging than we planned.

Event customization, originally conceived as a means to ex-
tend the functionality of input forms in unforeseen ways,
turned out to be a key component of our ability to prototype
new user interface ideas rapidly. As their name may imply,
the original intent of input forms was very modest compared
to the role they now play. We designed input forms to be
the standard means by which applications gather data for a
task. One or more input forms would be displayed as neces-
sary within the context of another, undefined, application
context. This original concept is applied successfully
throughout the calculator. For example, in the Memory
Browser, when NEW is pressed to create a new variable, an
input form is used to get the information required (see Fig.
22). In this context, the user can do only three things in the
input form: enter data, cancel the form, or accept (OK) the
form. This simple but effective behavior was the model used
for the original input form design.

As the project developed, however, it became apparent that
an input form could serve not only as a information gatherer
but also as an action director. Input forms thus graduated
from simple dialog boxes to full-fledged application
environments.
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Fig. 22. Memory Browser NEW input form.

Interestingly, no major changes to the input forms engine
were necessary or even desirable to support their new role.
Instead, the essence of input form functionality remained
always data management, and the events customization was
applied selectively where needed to enhance application
forms.

In a similar manner, the event-driven choose box engine was
eventually pressed into service as a powerful base for list-
style applications like the Memory Browser.

The combination of lean, focused, standard feature sets for
input forms and choose boxes and high customizability
proved invaluable during the calculator design refinement.
Throughout the middle portion of the project, when the
basics had been settled but many user interface details were
still unclear, we were able to prototype new ideas quickly
and realistically by customizing event responses.

Translation files were another development effort that helped
us keep the design and implementation moving forward.
However, we learned over time that their overhead caused
some duplication of code and inefficiency to creep into the
interface between the input forms and the calculator main-
frame. We addressed this issue where possible by making
simple and safe code substitutions while leaving the inter-
face concepts intact to enable high-confidence code defect
fixes late in the project. In effect, we made a choice between
maintainability and high performance that still remains a
controversial topic among the HP 48G/GX developers.

3D Plotting

The functionality described in this section is a suite of 3D
graphing and viewing utilities for the HP 48G/GX. We had
several requirements to consider in creating these routines.
Our aims were that they be psychologically effective and
require only a small amount of code.

In exploring visualization techniques on a variety of ma-
chines we found that increasing “realism” (ray-traced,
Phong-shaded, hidden-line, etc.) in the graphical presenta-
tion of functions of two variables did not necessarily corre-
late with increasing ease of comprehension. The HP 48G/GX
routines represent the results of some of these experiments
(including time-to-completion as an important factor).

All of the 3D plotting routines are intended as seamless ex-
tensions of the other built-in plotting utilities. In particular,
they share the same standard user interface and are selected
as alternative plot types. The 3D plotting routines are SLOPE-
FIELD, WIREFRAME, YSLICE, PCONTOUR, GRIDMAP, and PARSUR-
FACE.

Like the other plotting routines, all the 3D plotting routines
assume that the function of interest is stored in EQ.3 Further,
they assume, by default, that the function is represented as
an expression in the variables X and Y—for example, u,v —
sin(u+v) is represented as SIN(X+Y) in EQ. The use of other
variable names is provided for by input form options or by
the INDEP and DEPEND keywords.

While this section is titled “3D Plotting,” a better name would
be “visualization techniques for functions of two variables.”
This would cover the perspective view of the graph of a
scalar function of two variables (WIREFRAME), the slicing view
of a scalar function of two variables (YSLICE), the contour-
map view of a scalar function of two variables (PCONTOUR),
the slope interpretation of a scalar function of two variables
(SLOPEFIELD), the mapping grid visualization of a two-vector-
valued function of two variables (GRIDMAP), and the image
graph of a three-vector-valued function of two variables
(PARSURFACE).

Given this unity of purpose, there is considerable overlap in
the global parameters (options) used in these routines. These
plotting parameters are stored in the variable VPAR, analogous
to PPAR.3 The main data structure stored in VPAR describes the
view volume, a region in abstract three-dimensional space in
which most of the visualizations occur (see Fig. 23).

VPAR quantities controlling the view volume are:

Xieft and Xyighy, controlling the width of the view volume
Y and Ypear, controlling the depth of the view volume

Ziow and Znjgh, controlling the height of the view volume
Xe, Ye, and Zg, the coordinates of the eye point.

In addition to these, VPAR contains other quantities used by
some of the routines. These are:

XXefr and XXiigh, an alternative X input range, used for
GRIDMAP and PARSURFACE

YY¢r and YYpeqr, an alternative Y input range, used for
GRIDMAP and PARSURFACE (note that this differs from the cur-
rent Suite3D interpretation)

Ny and Ny, the number of X and Y increments desired, used
in all of the routines instead of or in combination with RES.

SLOPEFIELD

The SLOPEFIELD plot type draws a lattice of line segments
whose slopes represent the function value at their center
point. Using SLOPEFIELD to plot f(x,y) allows your eye to pick
out integral curves of the differential equation dy/dx = f(x,y).
It is quite useful in understanding the arbitrary constant in
antiderivatives.

The number of lattice points per row is determined by Ny
and the number of lattice points per column is determined

7 View VOIV Y Top View
ZhiT h Y
far
Y /|
\Yfar
Viier Z||0W Ynear
Neﬁ o Kright Xieft Xright
(Xe, Yo Ze) View Screen i 1 Unit
View Screen x v. 7 )
e 1er &g,

Fig. 23. VPAR parameters in relation to the view volume.
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Fig. 24. SLOPEFIELD plot of dx/dt = sin(xt).

by Ny. The input region sampled is given by Xjefy <X <Xjight
and Ypear <Y <Yy

The input form in this case allows the user to:

Choose or enter the defining expression for the function to
be plotted

Choose the names of the two variables (identical to INDEP
and DEPEND)

Choose Xjefy and Xyighe (default to their current value, or
XRNG if no current value)

Choose Ypear and Yg,, (default to their current value, or
YRNG if no current value)

Choose Ny and Ny (default to their current value or 13 and 8
if no current value)

Verify and/or choose RADIANS, DEGREES, or GRADS mode.

In trace mode for SLOPEFIELD, the arrow keys jump the cursor
from sample point to sample point indicating both the coor-
dinates of the sample point and the value of the slope at that
point.

Example Problem: Determine graphically whether all solutions
of the differential equation dx/dt = sin(xt) with initial condi-
tions 3.0 <x(0) <3.1 satisfy 2.8 <x(t) <3.6 for all t in [0,2].

Solution: Choose SLOPEFIELD plot type and enter SIN(XxT) as
the current equation. Choose T as the independent variable
and X as the dependent variable. Choose 0 as Xjef, 2 as
Xiight, 2.8 a5 Ypear, and 3.6 as Y. Verify RADIANS mode, and
draw the result. As seen in Fig. 24, almost all of the integral
curves in this region leave the window either through the
top or the bottom. Therefore, not all the integral curves
satisfy 2.8 <x(t) <3.6 for t in [0,2].

WIREFRAME

The WIREFRAME plot type draws an oblique-view, perspec-
tive, 3D plot of a wireframe model of the surface deter-
mined by z = f(x,y). The function determined by the current
equation is sampled in a grid with Ny samples in each row
and Ny samples in each column. Each sample is perspective-
projected onto the view screen along the line connecting the
sample and the eye point (see Fig. 25).

Neighboring samples are connected by straight lines. The
sampled region is determined by the base of the view vol-
ume (Xiefr, Xright, Ynear Yfar). The region of the view screen
represented in the PICT GROB (graphics object3) and hence
on the display is determined by the projection of the view
volume on the view screen (see Fig. 20).
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Fig. 25. Perspective projection of a point in the view volume onto
the view screen.

The input form in this case allows the user to:

Choose or enter the defining expression for the function to
be plotted

Choose the names of the two variables (identical to INDEP
and DEPEND)

Choose Xef and Xighe (default to their current value, or
XRNG if no current value)

Choose Ypear and Yg,, (default to their current value, or
YRNG if no current value)

Choose Zjow and Zpign (default to their current value, or
default YRNG if no current value)

Choose Xe, Ye, and Ze (default to their current value, or 0,
-1, 0 if no current value)

* Choose Ny and Ny (default to their current value or 13 and 8

if no current value)
Verify and/or choose RADIANS, DEGREES, or GRADS mode.

In trace mode for WIREFRAME, the arrow keys jump the cursor
from sample point to sample point and the display indicates
all three coordinates of the sample point.

Example Problem: Determine graphically whether the surface
defined by z = x4 - 4x2y2 + y4 is, at the origin, concave up,
concave down, or neither.

Solution: Choose WIREFRAME plot type and enter XM—4*XA2*YA
2+YM4 as the current equation. Choose X and Y as the inde-
pendent and dependent variables. Choose —1 for Xjef, 1 for
Xiighty =1 for Ypear, 1 for Yeyy, =1 for Zjgy, and 1 for Zpigp so
that the view volume surrounds the origin. Choose 4 for X,
-10 for Y, and 3 for Z. to give a distant, oblique view of the
graph. As seen in Fig. 27, the graph displays a “monkey
saddle” which is neither convex nor concave at the origin.

New Interactive Features

The picture environment, which is invoked automatically
when graphs are drawn or by pressing the PICTURE key, al-
lows the user to interact with a graph. The user can move

View Volume

View Screen

XR;A\ YRNG

Fig. 26. Relationship of view volume and eye point to XRNG and

(Xe, Yes Ze)



Fig. 27. WIREFRAME plot of the surface determined by z = x4 — 4x2y?2
+ y4 with view volume [-1,1]x[~1,1]x[-1,1] and eye point (4,-10,3).

the cross hairs around using the arrow keys, trace along the
graph, add picture elements such as dots, lines, and circles,
or do interactive calculus operations such as finding the de-
rivative at the cross hairs location.

Trace, Faster Cross Hairs

The HP 48S/SX cross-hair-moving code was rewritten for the
HP 48G/GX. The cross hairs needed to be faster, to fade less
as they moved, and to accommodate added functionality
such as tracing and shading. The cross hair code originally
came from the HP 28 and has been maintained and modified
over the years. In the HP 28, most of the cross hair code was
written in high-speed assembly language and actually con-
tained a routine called SLOW which was buried deep within
RPL subroutine calls. SLOW was needed to slow the cross
hairs down to an acceptable speed. The use of this word
was discovered during the process of porting the code from
the HP 28 to run on the bigger HP 48S/SX display. There
were many occasions during the HP 48G/GX project when
we were trying to speed up various operations and wished
we could just find the word SLOW and take it out!

The fading of the cross hairs as they moved was improved
by changing the code so that the time between turning the
cross hairs off at one pixel and turning them on at the next
pixel is minimized. To do this, all the calculations required
for moving are now done before turning the cross hairs off.
Unfortunately, the new display on the HP 48G/GX trades off
response time for contrast, so although it is brighter and has
higher contrast than the HP 48S/SX display, it takes longer
for pixels to turn dark. Thus, much of the work to reduce
fade in moving cross hairs was canceled out by the new
screen characteristics. The user can darken the display by
holding down the ON key and pressing the + key a few
times, and this will make the moving cross hairs easier to
see.

Tracing along a graph with the cross hairs presents a chal-
lenge because the user’s function must be evaluated at every
point, so in effect the system RPL programmer must turn
control over to the user at each point of the graph. This re-
quired careful attention to error handling and to managing
the data stack, which is a shared resource. The procedures
for tracing vary with the different plot types. The procedures
are kept in the property list associated with each plot type,
and then the appropriate procedure is passed in and evalu-
ated when trace mode is turned on. It required quite a bit of
rewriting to implement this object-oriented, extensible ap-
proach because much of the existing cross hair code had
previously undergone rewriting and optimizing for speed
and code size.

Animation

The ANIMATE command is a program that was easy to write
and that the user could have written in user-RPL program-
ming language, but we added it for the sake of convenience.
Also, it is used as part of Y-slice 3D plotting. It sets up a
loop that repeatedly puts graphics objects into the PICT dis-
play area.

A quick way to get started with animation is to press PICTURE
to go to the interactive graphics environment, where you
will be able to create some pictures to animate. Press EDIT,
then DOT+ to turn on the etch-a-sketch-style drawing mode
in which pixels are turned on wherever you move the cross
hairs. Using the up, down, left, and right arrow keys, sketch
something, then press STO to send a copy of your picture to
the stack. Continue sketching, press STO again, and repeat
this procedure, continuing to add to your sketch until you
have a handful of pictures on the stack, say six of them.
Press CANCEL to leave the PICTURE environment, and you will
see the the picture objects sitting on the stack. They are
called GROBs, which is short for graphics objects.3 To use
the ANIMATE command, all you have to do is enter the num-
ber of GROBs (for example, press 6 then ENTER if you
created six pictures), then press the ANIMATE key, which you
will find in the GROB submenu of the PRG menu. Your series
of sketches will come to life as the ANIMATE command flips
through them.

Mathematics

Several new mathematical features were added to meet the
needs of the educational market and to match or exceed
corresponding features recently introduced by our competi-
tion. Design trade-offs made for and inherited from earlier,
less capable platforms were reconsidered, and relevant soft-
ware developed for earlier machines but not used in the HP
48S/SX was used wherever appropriate.

Design and Implementation Issues

The HP 48G/GX is targeted at the college-level mathematics,
science, and engineering educational market. We hoped,
also, to achieve more success in high school advanced
placement courses. In these environments calculators are
used as pedagogical tools, illustrating mathematical and
modeling concepts introduced in the courses.

As a pedagogical tool, the calculator’s accuracy and reliability
are paramount design goals. Speed of execution is important
but secondary to the validity of the computed results. To
achieve high accuracy and reliability the computational
methods needed to be more numerically sophisticated than
typical textbook methods. This greater complexity is hidden
from the casual user wherever possible, but made available
to the sophisticated user so the methods can be tuned to
their needs.

One means of achieving maximum accuracy and reliability is
to read the current literature and consult with expert special-
ists to obtain the best methods, then implement those meth-
ods from scratch. We have employed this approach in the

August 1994 Hewlett-Packard Journal 19



User Versions of Interface Tools

Although the primary focus of the new user interface for the HP 48G/GX was to
enhance our built-in applications, it became apparent as the project progressed
that calculator owners who program would want access to the same capabilities to
enhance their efforts. For the choose box, message box, and especially the input
form tools, the biggest challenge involved scaling back the numerous features to
produce simple user commands that still offer customization potential.

The message box command, MSGBOX, was designed to display pop-up mes-
sages with a minimum of fuss. Thus, it takes just one argument—the message
string—and produces a word-wrapped normal-sized message box.

The choose box command, CHOOSE, is slightly more complicated. To enable but
not require the same object-oriented use of choose boxes as the built-in applica-
tions, the CHOOSE command accepts a list of items in two formats. In the simplest
format, an item is specified by a single object, which is displayed and returned if
chosen. In the alternate format, an item is specified by a two-element list object.
The first element is displayed in the choose box, and the second element is returned
if the item is chosen.

For simplicity of the user interface, CHOOSE displays a normal-sized choose box
without the multiple-choice capability used by some built-in applications.

The MSGBOX and CHOOSE commands largely follow the same interface specifica-
tion methods as their system-level counterparts. This differs markedly from the input
form user command, INFORM. To maintain complete flexibility over all elements of
form layout and behavior, the input forms engine takes three arguments for each
label and thirteen arguments for each field, specifying such details as exact location
and size, display format, and so on. Added to that are global arguments for the
form procedure and form title and some other details. All together, an input form
with four labeled fields requires 68 arguments. While this amount of information is
justified for the varied needs of built-in applications, it is an unnecessary burden
for programmers just wanting to get some simple input from the user.

For the INFORM command, therefore, we developed an automatic form layout
scheme that serves most needs, with options for further detailing. Basically, the
INFORM input form is viewed as a grid that is filled with fields starting in the upper-
left corner and proceeding from left to right and top to bottom. The number of

5: “Personal Information” = Title
4: {"Name:” {} {}
Field Specifications "Bldg: ” “Phone: ” { }=—— Field Expander

"Notes:” {+ {}} Column Count (3)

{35} and Tab Width (5)

3
Reset and Current 2 {}
Values T {}

INFORM

¥

PER=OMAL IMFORMATION

HAME:
ELDG: 7 PHOME: 555, 1234
MOTES: "COWTRADICTORYM

EnT] 1 1 JiAMGL] Ok ]

Fig. 1. A custom input form created by INFORM.

columns in the grid is specified as one of INFORM's arguments, and each field's
width is determined by the width of its label and by the user-supplied tab width,
which places invisible tab stops within each column to help align fields vertically. A
field can span multiple columns with a special field-expander specification. Help
text and object type restrictions can be included for any field, but aren't required.

Fig. 1 shows an example of a custom input form created by INFORM. Notice that,
despite the relative simplicity of the input arguments, an input form with aligned
fields of varying widths is presented. This technique for building input forms proved
so valuable that it was used to create the Solve Equation input form, which changes
according to the number and names of variables in the equation to be solved.

past with success, but it can be time-consuming, expensive,
and risky.

Another approach sometimes available is to consult standard
computational libraries used by the professional scientific
community. Several such public-domain libraries are available
that represent the current state of the art. In some develop-
ment environments these libraries can be used directly. In
others, they can at least provide high-quality methods and
implementations that when judiciously used facilitate meet-
ing tight development schedules at low cost. We found the
LAPACK library* of FORTRAN 77 numerical linear algebra
subroutines particularly helpful in this regard.

As usual, code was reused whenever possible to achieve
timely and reliable implementations. In addition to the
source code for the HP 48S/SX and its Equation Library card,
we had implementations dating from the HP 71 Math Pac
that were revised for the HP 48S/SX but didn’t find ROM
space in that product.

While reusing code, we took advantage of the HP 48G/GX
CPU clock speedup and larger RAM environment over the
HP 48S/SX to reconsider some of our previous implementa-
tion trade-offs in an effort to achieve greater accuracy. In
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some cases we decided to employ more computational effort
and to store intermediate values in higher precision to
achieve more accurate results.

New Mathematical Features

The HP 48G/GX includes many new mathematical features
over those provided by the HP 48S/SX. These are array
manipulations, additional linear algebra operations, a poly-
nomial root finder and related operations, two differential
equations solvers and associated solution plotters, discrete
Fourier transforms, and financial loan computations.

The array manipulation commands are primarily pedagogical
tools. These include a random array generator and com-
mands to add or delete rows or columns of matrices or ele-
ments of vectors, decompose matrices into or create matrices
from row or column vectors, extract diagonal elements from
a matrix or create a matrix from its diagonal elements, per-
form elementary row and column operations, and compute
the row-reduced echelon form of a matrix.

We significantly improved and expanded the linear algebra
functionality of the HP 48G/GX over the HP 48S/SX. The
determinant, linear system solver, and matrix inverter were



revised to be more accurate through additional computation
and by storing all intermediate values in extended precision.
We added a command to compute a condition number of a
square matrix, which can be used to measure the sensitivity
of numerical linear algebra computations to rounding errors,
a command to compute a solution to an underdetermined or
overdetermined linear system by the method of least squares,
commands to compute eigenvalues and eigenvectors of a
square matrix, commands to compute the singular value
decomposition of a general matrix, and commands to com-
pute related matrix factorizations and functions. These linear
algebra commands accept both real and complex arguments
and perform all intermediate computation and storage in
extended precision.

The HP 48G/GX has commands to compute all roots of a real
or complex polynomial, to construct a monic polynomial
from its roots, and to evaluate a polynomial at a point. The
polynomial root finder is a modification of the HP 71 Math
Pac’s PROOT command, extended to handle complex coeffi-
cients. It uses the Laguerre method with deflation for fast
convergence and constrained step size and an alternate initial
search strategy for reliability.

The HP 48G/GX has commands to compute the discrete
Fourier transform or the inverse discrete Fourier transform of
real or complex data. These commands were leveraged from
the HP 71 Math Pac’s FFT and IFFT commands, requiring the
data lengths to be a nonzero power of 2, and were modified
slightly to match the customary definitions of these trans-
formations.

Finally, we included time-value-of-money commands. These
commands have appeared in our financial calculators and
were available on the HP 48SX Equation Library card. Since
engineering feasibility studies must include at least rudimen-
tary time-value-of-money computations it seemed useful to
include these commands in the HP 48G/GX.

Differential Equation Plotting

The HP 48G/GX contains two differential equation solvers
and solution plotters. These solvers and solution plotters can
be accessed via their input forms or invoked programmati-
cally via commands. We provide a programmatic interface to
the differential equation solvers and their subtasks so the
user can use them with the calculator’s general solver feature
to determine when a computed differential equation solution
satisfies some condition, or to implement custom differential
equation solvers from their subtasks.

In implementing the differential equation solution plots, one
challenge was to identify and implement good solution meth-
ods. Another challenge was to merge this new plot type with
the new 3D plot types described earlier and with the existing
HP 48SX plot environment in a backward-compatible manner.

The HP 48G/GX specifically solves the initial value problem,
consisting of finding the solution y(t) to the first-order equa-
tion y'(t) = f(t,y) with the initial condition y(tp) = yo. Here
y'(t) denotes the first derivative of a scalar-valued or vector-
valued solution y with respect to a scalar-valued parameter t.
Higher-order differential equations can be expressed as a

first-order system, so this problem is more general than it
might at first appear.

Many solution methods have been developed over the years
to solve the initial value problem. We decided to implement
two methods, a Runge-Kutta-Fehlberg method for simplicity
and speed of execution and a Rosenbrock method for reli-
ability. The first method is easier to use, requiring less infor-
mation from the user, but can fail on stiff problems.* The
Rosenbrock method requires more information from the user,
but can solve a wider selection of initial value problems.
Both initial value problem solution methods require the user
to provide the function f(t,y), the initial conditions, the final
value of t, and an absolute error tolerance. The Rosenbrock
method also requires the derivative of f(t,y) with respect to y
(FYY) and the derivative of f(t,y) with respect to t (FYT).

All plot types use the contents of the variable EQ, typically to
specify the function to be plotted. If the user selects the stiff
(Rosenbrock) method the extra functions are passed to the
solver by binding EQ to a list of functions f(t,y), FYY, and FYT.
Otherwise, EQ is bound to the function f(t,y) needed by the
Runge-Kutta-Fehlberg method.

Both methods solve the initial value problem by computing
a series of solution steps from the initial conditions towards
the final value, by default taking steps as large as possible
subject to maintaining the specified error tolerance. The
solution plotter plots the computed values and by default
draws straight lines between the plotted points. However,
although the computed steps may be accurate, the line seg-
ments drawn between the step endpoints may poorly repre-
sent the solution between those points. The plot parameter
RES is used by many plot types to control the plot resolution.
If RES is zero the initial value problem solution plotter im-
poses no additional limits on the step sizes. If RES is nonzero
the plotter limits each step to have maximum size RES.

For the scalar-valued initial value problem it is typical to plot
the computed solution y(t) on the vertical axis and the pa-
rameter t on the horizontal axis. However, in the vector-val-
ued case the choice of what is to be plotted is not as clear.
The user may wish a particular component of the computed
solution plotted versus t or may wish two components
plotted versus each other. The HP 48G/GX allows the user
to specify the computed scalar solution, any component of
the computed vector solution, or the parameter t to be
plotted on either axis. This flexibility was introduced into the
plot environment by expanding the AXES plot parameter.
Previously, this parameter specified the coordinates of the
axes origin. This parameter was expanded so that an op-
tional form is a list specifying the origin and the horizontal
and vertical plot components.

By judiciously expanding the meaning of the various plot
parameters we were able to accommodate the differential
equation solution plot type while maintaining backward
compatibility with previous plot types.

* Stiff problems typically have solution components with large differences in time scale. More
information is needed by a solver to compute a solution efficiently.
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